• Title/Summary/Keyword: Periodic Structure

Search Result 600, Processing Time 0.027 seconds

Partial H-plane Filter with Periodic Structure (주기 구조를 이용한 Partial H-plane Filter)

  • Kim Dong-Jin;Chung Woo-Sung;Lee Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.746-752
    • /
    • 2006
  • In this paper, a compact partial H-plane filter with periodic structure is proposed. Guided wavelength of periodic structure' is reduced by slow wave effect. Cross-section and length of partial H-plane filter with periodic structure are considerably reduced by 75% and 30%, respectively, as compared with conventional E-plane filter. In addition, spurious responses of the bandpass filter are improved. To design bandpass filter with periodic structure, we have analyzed a periodic structure of partial H-plane waveguide and derived equations of the periodic filter. Measured results are in good agreement with simulated results.

Comparison of Scattering Characteristics between Cylindrical Infinite and Finite Periodic Structure (원통형 무한 배열 구조와 원통형 유한 배열 구조의 전파 특성 비교)

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Lee, Kyung-Won;Kok, Chan-Ho;Kim, Dae-Whan;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.196-203
    • /
    • 2015
  • In order to apply cylindrical periodic array to phased array antenna or frequency selective surface, efficient electromagnetic analysis is required. Finite periodic array is applied in real situation. But, generally, assumed that periodic structure is arranged infinitely, approximate electromagnetic characteristics can be obtained efficiently. But, difference of characteristics between real structure and approximate structure occurs because finite periodic array is approximated to infinite periodic array. Therefore, comparison and analysis of cylindrical infinite array and finite array are required. In this paper, cylindrical infinite periodic array are analyzed using cylindrical Floquet harmonics. Also, cylindrical finite periodic array is analyzed using method of moments (MoM) with thin wire approximation because periodic structures which are composed of strip with narrow width are analyzed. Transmission characteristics and surface currents of infinite and finite periodic structures are compared.

The Effects of the Stiffness Mistuning on the Dynamic Response of Periodic Structures under a Harmonic Force (강성 불균일이 조화가진을 받는 주기적 구조물의 동특성에 미치는 영향)

  • Ahn, T.K.;Shkel A.M.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1355-1360
    • /
    • 2005
  • Periodic structures can be applied as a MEMS(micro-electro-mechanical system) sensor or actuator due to low energy loss and wideband frequency response. The dynamic behavior of a mistuned periodic structure Is dramatically changed from that of a perfectly tuned periodic structure. The effects of mistuning, coupling stiffness, and driving point on the forced vibration responses of a simple periodic structure ate investigate4 through numerical simulations. On the basis of that, one can design effective and reliable MEMS components using periodic structures.

Systematic Analysis of Periodic Variation in Paper Structure

  • Sung, Yong-Joo;Keller, D.Steven
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.50-58
    • /
    • 2009
  • Periodic variation of local paper structure was evaluated using two-dimensional fast Fourier transform (FFT) and spectral analysis. Since the periodic variation could originate from various sources and have different magnitudes and patterns depending on the origins, a complete analysis of local paper structure properties such as local grammage, local thickness, local apparent density and surface topography was proposed in this study. For a commercial copy paper, the individual periodic patterns for each local structural property were identified by using inverse FFT spectrums of the filtered spectrum. The spectral analysis of newsprint sample provided the period of variation quantitatively, which was useful in comparing the origins of the individual periodic patterns of the local structural properties.

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

WEAKLY ALMOST PERIODIC POINTS AND CHAOTIC DYNAMICS OF DISCRETE AMENABLE GROUP ACTIONS

  • Ling, Bin;Nie, Xiaoxiao;Yin, Jiandong
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.39-52
    • /
    • 2019
  • The aim of this paper is to introduce the notions of (quasi) weakly almost periodic point, measure center and minimal center of attraction of amenable group actions, explore the connections of levels of the orbit's topological structure of (quasi) weakly almost periodic points and study chaotic dynamics of transitive systems with full measure centers. Actually, we showed that weakly almost periodic points and quasiweakly almost periodic points have distinct orbit's topological structure and proved that there exists at least countable Li-Yorke pairs if the system contains a proper (quasi) weakly almost periodic point and that a transitive but not minimal system with a full measure center is strongly ergodically chaotic.

Error elimination for systems with periodic disturbances using adaptive neural-network technique (주기적 외란을 수반하는 시스템의 적응 신경망 회로 기법에 의한 오차 제거)

  • Kim, Han-Joong;Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.898-906
    • /
    • 1999
  • A control structure is introduced for the purpose of rejecting periodic (or repetitive) disturbances on a tracking system. The objective of the proposed structure is to drive the output of the system to the reference input that will result in perfect following without any changing the inner configuration of the system. The structure includes an adaptation block which learns the dynamics of the periodic disturbance and forces the interferences, caused by disturbances, on the output of the system to be reduced. Since the control structure acquires the dynamics of the disturbance by on-line adaptation, it is possible to generate control signals that reject any slowly varying time-periodic disturbance provided that its amplitude is bounded. The artificial neural network is adopted as the adaptation block. The adaptation is done at an on-line process. For this , the real-time recurrent learning (RTRL) algoritnm is applied to the training of the artificial neural network.

  • PDF

Design of High Gain Log-Periodic Tooth Antenna for Image Sensor (이미지 센서용 고이득 Log-Periodic Tooth 안테나 설계)

  • Shim Jae-Ruen
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.603-606
    • /
    • 2006
  • In this study, we proposed a Modified Log-Periodic Tooth antenna structure with reflector for millimeter wave image sensor of PMMW(Passive Millimeter Wave). PMMW image sensor satisfy the requirements, such as, High Gain, Wideband, and Planar antenna structure.

  • PDF