• Title/Summary/Keyword: Peristaltic flow

Search Result 42, Processing Time 0.031 seconds

A study on the peristaltic waveform of valveless PZT pump using disk type multi PZTs (다수 개 디스크 PZT 를 이용한 밸브리스 압전펌프의 연동구동 파형에 관한 연구)

  • Ham Y.B.;Park J.H.;Yun D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1824-1827
    • /
    • 2005
  • For application to micro fluid control systems such as ${\mu}TAS$ (Micro Total Analysis Systems) and DDS (Drug Delivery Systems), it is very significant to handle precise and minute flow rates with low pressure pulsation. In this study, a novel valveless piezoelectric pump using peristaltic motion with three disk type PZT actuators is presented. The newly devised pump with an effective size of $70mm{\times}60mm{\times}55mm$ has three actuator layers connected in series from inlet to outlet. The PZT actuator has a maximum displacement of 240 ${\mu}m$ and a maximum force of 1.6 N. When the driving voltage for PZT actuators is sequentially applied with a certain phase shift, the pumping is performed by peristaltic motion of liquid volume. The working fluid is shut off without the driving voltage. Three methods for sequential driving are proposed and experimentally investigated. First and second methods utilize an intermittent sinusoidal waveform with phase shift of $90{\circ}\;and\;120^{\circ}$, respectively. Third method uses a rectangular waveform with phase shift of $90^{\circ}$. A controller with multi-phase shifter is designed and fabricated. Then, frequency and voltage-flow rate characteristics and load pressure-flow rate characteristics are experimentally investigated to verify the validity of the developed pump.

  • PDF

Numerical Study of the Magnetohydrodynamic Heat Transfer Peristaltic Flow in Tube Against High Reynolds Number

  • Hamid, A.H.;Javed, Tariq;Ali, N.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1295-1302
    • /
    • 2018
  • In the present investigation, we have studied the magnetohydrodynamic (MHD) heat transfer of peristaltic flow in a tube. The analysis is made without imposing any assumption to obtain the streamline and isothermal line directly. Galerkin's finite element method has been used on the governing Navier-Stoke's equation in the form of ${\psi}-{\omega}$. The graphs of the computed longitudinal velocity, temperature and pressure are plotted against different value of the emerging parameter by using the stream function and vorticity. The results are valid beyond the long wavelength and the low Reynolds number limits. We conclude that higher values of the parameters are not independent of the time mean flow rate.

FLUID MASS STREAMING IN A CHANNEL UNDER STANDING WALLS VIBRATIONS

  • Lee, Kwi-Joo;Shugan, Igor;Kim, Kyoung-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.171-176
    • /
    • 2003
  • Peristaltic mass transfer of fluid in a channel with standing wall oscillations is analyzed. Averaged nonlinear Navier-Stokes equations of motion are examined for a wide range of Reynolds numbers and external pressure drops. Nonpropogating wall oscillations with relatively big amplitudes essentially increase the liquid flow. Most effective intensifying of mass transfer occurred for low Reynolds numbers.

  • PDF

Development of a Peristaltic Micropump with Lightweight Piezo-Composite Actuator Membrane Valves

  • Pham, My;Goo, Nam-Seo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • A peristaltic micropump with lightweight piezo-composite actuator (LIPCA) membrane valves is presented. The micropump contained three cylinder chambers that were connected by microchannels and two active membrane valves. A circular miniature LIPCA was developed and manufactured to be used as actuating diaphragms. The LIPCA diaphragm acted as an active membrane valve that alternate between open and closed positions at the inlet and outlet in order to produce high pumping pressure. In this LIPCA, a lead zirconium titanate ceramic with a thickness of 0.1 mm was used as an active layer. The results confirmed that the actuator produced a large out-of-plane deflection. During the design process, a coupled field analysis was conducted in order to predict the actuating behavior of the LIPCA diaphragm; the behavior of the actuator was investigated from both a theoretical and experimental perspective. The active membrane valve concept was introduced as a means for increasing pumping pressure, and microelectromechanical system techniques were used to fabricate the peristaltic micropump. The pumping performance was analyzed experimentally in terms of the flow rate, pumping pressure and power consumption.

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

디스크형 진동자를 이용하는 새로운 형태의 밸브리스 마이크로 압전 펌프

  • O, Jin-Heon;Im, Jong-Nam;Jeong, Ui-Hwan;Im, Gi-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.91-91
    • /
    • 2009
  • Piezoelectric micro-pump should contain the physical running parts like check valves for acquiring the unilateral motion of fluid from the alternating motion of actuators. But the check valves raise many problems such as abrasion or exhaustive destruction by the recursive mechanical displacement To solve these problems, we propose a novle type piezoelectric valveless micro-pump using peristaltic motion due to the traveling wave excitation. Proposed pump model is consisted of two piezoelectric ceramic plates, elastic metal body, caps for covering flow path, rubber rings for sealing tightly and disk springs for the pressurization of pump body.

  • PDF

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Studies on Solvent Sublation of Trace Heavy Metals by Continuous Flow System as Ternary Complexes of 1,10-Phenanthroline and Thiocyanate Ion

  • Kim, Young-Sang;Choi, Yoon-Seok;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1775-1780
    • /
    • 2003
  • A continuous flow system has been developed to determine trace Cu(II), Mn(II), Ni(II) and Zn(II) in a large volume of water samples by a solvent sublation technique. The mixed solution of 1,10-phenanthroline(phen) and thiocyanate ion was used as ligands for the formation of their ternary complexes. The continuous system was constructed in this laboratory with a peristaltic pump, a mini shaker, three mixing bottles and a flotation cell by connecting each part with a polyethylene tube. The flotation conditions such as the flow rate of sample solution and the injection rates of ligand, buffer and surfactant solutions have been investigated to obtain the best sublation efficiencies. Each solution flowed into the flotation cell through each polyethylene tube by the peristaltic pumps. The ternary complexes were floated and extracted into MIBK in a flotation cell of 2 L by bubbling a nitrogen gas. The absorbances of extracted analytes in MIBK were directly measured by graphite furnace-AAS. The concentrations of 1,10-phenanthroline and thiocyanate ion were $2.6\;{\times}\;10^{-3}$ M and $2.3\;{\times}\;10^{-2}$ M in the mixed solution, respectively. The pH of sample solution was adjusted to 5.0 with a buffer solution and 1%(m/v) sodium lauryl sulphate solution was added as a surfactant to support the effective flotation of the complexes. The $N_2$ gas was bubbled at 30 mL/min for 90 minutes for 20 L of sample. Reproducible results of less than 10% RSD and recoveries of 80-120% could be obtained in real samples.

Improvement of Measurement Precisions for Uranium Isotopes at Ultra Trace Levels by Modification of the Sample Introduction System in MC-ICP-MS

  • Park, Ranhee;Lim, Sang Ho;Han, Sun-Ho;Lee, Min Young;Park, Jinkyu;Lee, Chi-Gyu;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.7 no.2
    • /
    • pp.50-54
    • /
    • 2016
  • Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is currently used in our laboratory for isotopic and quantitative analyses of nuclear materials at ultra-trace levels in environmental swipe samples, which is a very useful for monitoring undeclared nuclear activities. In this study, to improve measurement precisions of uranium isotopes at ultratrace levels, we adopted a desolvating nebulizer system (Aridus-II, CETAC., USA), which can improve signal sensitivity and reduce formation of uranium hydride. A peristaltic pump was combined with Aridus-II in the sample introduction system of MC-ICP-MS to reduce long-term signal fluctuations by maintaining a constant flow rate of the sample solution. The signal sensitivity in the presence of Aridus-II was improved more than 10-fold and the formation ratio of UH/U decreased by 16- to 17- fold compared to a normal spray chamber. Long-term signal fluctuations were significantly reduced by using the peristaltic pump. Detailed optimizations and evaluations with uranium standards are also discussed in this paper.

A Development of the electronic controlled vaporizer for low flow anesthesia (저유량 마취를 위한 전자제어식 기화기 개발)

  • Oh, Yeong-Taek;Park, Jae-Hoon;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.107-113
    • /
    • 2009
  • For the environmental safety of the operating room and patient healthcare, the closed type rebreathing system is widely adopted. In order to reduce the anesthesia gas during surgery, the mixing ratio of anesthesia gas with breathing air should be precisely controlled. Generally, the breathing air passes through the vaporizer to mix the anesthesia gas, but there is a difficulty in controlling the mixing ratio precisely. In this paper, the stand-alone style vaporizer is designed and the operating characteristics are investigated. The vaporizer measures the temperature and pressure in the vaporizing chamber and chamber temperature is precisely controlled by proportional controlled heater. Exact quantity of anesthesia media is feeded by PID controlled peristaltic pump and vaporized gas is mixed with breathing air flow by PWM controlled solenoid valve. The experimental result shows that the vaporizer has an excellent command following performances that it can be applied to the low flow anesthesia system.

  • PDF