• Title, Summary, Keyword: Permanent magnet synchronous motor(PMSM)

Search Result 373, Processing Time 0.049 seconds

The Application of Classical Direct Torque and Flux Control (DTFC) for Line-Start Permanent Magnet Synchronous and its Comparison with Permanent Magnet Synchronous Motor

  • Soreshjani, Mohsen Hosseinzadeh;Heidari, Reza;Ghafari, Ahmad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1954-1959
    • /
    • 2014
  • This paper attempts to design and present a comparison of classical Direct Torque Flux Control (DTFC) for Line-Start Permanent Magnet Synchronous Motor (LSPMSM) and its equal Permanent Magnet Synchronous Motor (PMSM). In order to present an in-depth analysis, both motors for DTFC Voltage Source Inverter (VSI)-fed in the same situations of different conditions are simulated and tested. The advantages of the proposed method for LSPMSM over the PMSM are discussed and analyzed.

A Study on Output and Design of Permanent Magnet Synchronous Motor with Dual-gap (300W급 이중 공극 구조 PMSM 설계 및 출력 특성에 관한 연구)

  • Kim, Seung-Joo;Kim, Youn-Hwan;Choi, Han-Suk;Moon, Jae-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.80-87
    • /
    • 2014
  • This paper suggests the dual-gap for generating power and increasing the torque of a direct-drive permanent magnet synchronous motor in a hybrid-cycle. To consider easy coil winding, we applied a structure of dual-gap for the permanent magnet synchronous motor (PMSM). Because the torque of PMSM with the dual-gap is very large, we are designed the appropriate specifications of the PMSM by selected the appropriate dual-gap slot and poles combination. The prototype model is selected by design theory for increasing torque and maximizing output power of PMSM. And the detailed structure design of the model was designed by the loading distribution method. The PMSM models were analyzed by finite element method. Finally, we have suggested appropriate rotor structure has benefit to further increasing torque and prevent decreasing of the output power in PMSM with dual-gap.

Nonlinear Speed Control of PM Synchronous Motor with Extended Kalman Filter Observer

  • Vu, Nga Thi-Thuy;Jung, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.15-23
    • /
    • 2011
  • This paper proposes a nonlinear speed controller for a permanent magnet synchronous motor (PMSM). In this paper, the load torque is estimated by an extended Kalman filter (EKF) observer because the proposed controller needs its knowledge. To confirm the effectiveness of the proposed control scheme, simulations and experiments are performed under motor parameter variations with a prototype PMSM drive system.

Speed Control of Permanent Magnet Synchronous Motor (영구자석형 동기 전동기의 속도 제어)

  • Jang S.M.;Park B.I.;Cho H.W.;You D.J.;Lee S.H.
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1082-1084
    • /
    • 2004
  • This paper presents simulation and test results of PMSM(Permanent Magnet Sychronous Motor) Controller. PMSM has higher efficiency and torque per volume than other motors because PMSM use permanent magnet of high energy density instead of field winding. PMSM control system also more efficient than Induction Motor's. In this paper, simulation and test to control speed and current of PMSM using DSP was accomplished.

  • PDF

A Study on the Regenerative Braking Control by means of Extending Brake Power of the Permanent Magnet Synchronous Motor(PMSM) (PMSM의 제동력 확보에 의한 회생제동 제어에 관한 연구)

  • Hwang, Lark-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.760-771
    • /
    • 2012
  • In this paper, a blind spot of motor car, and the put case that is driven the miniature model motor system, when make practical application of the permanent magnet synchronous motors(PMSM) braking and having had the ability that can all absorb regenerative power by means of electric brake which is occurred. a tow system of a miniature model motor traction system is established by 1C1M methods to control individually permanent magnet synchronous motors (PMSM) of each motor. vector control method is applied in order to improve ride quality of motor car and the efficient use of energy. it was obtained excellent experiment results from the simulations as a function of momentum load and miniature model. Also, this study is investigated the regenerative braking power securities of permanent magnet synchronous motors, speed detection to stop electric brake at extremely very low speed and motor control method of algorithm.

Support-vector-machine Based Sensorless Control of Permanent Magnet Synchronous Motor

  • Back, Woon-Jae;Han, Dong-Chang;Kim, Jong-Mu;Park, Jung-Il;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.149-152
    • /
    • 2004
  • Speed and torque control of PMSM(Permanent Magnet Synchronous Motor) are usually achieved by using position and speed sensors which require additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. In this paper, a novel speed sensorless control of a permanent magnet synchronous motor based on SVMR(Support Vector Machine Regression) is presented. The SVM regression method is an algorithm that estimates an unknown mapping between a system's input and outputs, from the available data or training data. Two well-known different voltage model is necessary to estimate the speed of a PMSM. The validity and the usefulness of proposed algorithm are thoroughly verified through numerical simulation.

  • PDF

Design of Fan-shape Type PMSM for Improving Efficiency of Non-rare Earth Motor (비희토류 전동기의 효율 향상을 위한 Fan-shape type PMSM 설계 및 성능 분석)

  • Cho, Sooyoung;Ahn, Hanwoong;Ham, Sang-Hwan;Jin, Chang-Sung;Lee, Sung Gu;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.360-364
    • /
    • 2016
  • The rare earth output is concentrated in limited number of countries including China. Also the necessity for development of non-rare earth motor is getting signified due to the rapid increase of rare earth price and resource weaponizing policies. Non-rare earth motor is generally designed as spoke type PMSM (Permanent Magnet Synchronous Motor) in order to maximize the power density. Such spoke type PMSM has advantage in concentrating the flux but demonstrates lower efficiency compared to permanent magnet using Nd (Neodymium) permanent magnet. Therefore, applications with strong necessity for efficiency need rotor structure having improved efficiency compared to spoke type PMSM. Hence, this study suggested fan-shape type PMSM with somewhat lower power density but maximized efficiency. Fan-shape type PMSM is a rotor shape demonstrating outstanding reduction of iron loss compared to existing spoke type. Thus, this study analyzed the improvement of efficiency and reduction of loss arising from the suggested shape through parameter calculation.

Field Circuit Coupling Optimization Design of the Main Electromagnetic Parameters of Permanent Magnet Synchronous Motor

  • Zhou, Guang-Xu;Tang, Ren-Yuan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The electromagnetic parameters of a permanent magnet synchronous motor (PMSM) such as the open load permanent magnet flux, d axis reactance $X_d$, and q axis reactance $X_q$, are most essential to the performance analysis and optimization design of the motor. Based on the numerical analysis of the 3D electromagnetic field, the three electromagnetic parameters of permanent magnet synchronous motors with U form interior rotor structures are calculated by FEA. The rules of the leakage coefficient and reactance parameters changing with the air gap length, permanent magnet magnetism length, and isolation magnetic bridge dimensions in the rotor are given. The calculated values agree well with the measured values. The FEA results are integrated with the self compiled electromagnetic design program to optimize the prototype motor. The tested performances of the prototype motor prove that the method is suitable for the optimization of motor structure.

A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations

  • Wu, Shaofang;Zhang, Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2125-2133
    • /
    • 2018
  • To achieve high performance speed regulation, a robust adaptive speed controller is proposed for the permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and input saturations in this paper. A nonlinear adaptive control is introduced to compensate the PMSM speed tracking errors due to uncertainties, disturbances and control input saturation constraints. By combining the adaptive control and the nonlinear robust control based on the interconnection and damping assignment (IDA) strategy, a new robust adaptive control is designed for speed regulation of PMSM. Stability and robustness of the closed-loop control system involved with the constrained control inputs rather than unconstrained control inputs are validated. Simulations for PMSM control in the presence of uncertainties and saturations nonlinearities show that the proposed approach is effective to regulate speed, and the average tracking error using the proposed approach is at least 32% smaller than the compared methods.

Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems (EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법)

  • Lee, Young-Jae;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.