• Title/Summary/Keyword: Permanent-magnet actuator

Search Result 112, Processing Time 0.022 seconds

Optimal Design of Permanent Magnet Actuator Using Parallel Genetic Algorithm (병렬유전 알고리즘을 이용한 영구자석형 액추에이터의 최적설계)

  • Kim, Joong-Kyoung;Lee, Cheol-Gyun;Kim, Han-Kyun;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents an optimal design of a permanent magnet actuator(PMA) using a parallel genetic algorithm. Dynamic characteristics of permanent magnet actuator model are analyzed by coupled electromagnetic-mechanical finite element method. Dynamic characteristics of PMA such as holding force, operating time, and peak current are obtained by no load test and compared with the analyzed results by coupled finite element method. The permanent magnet actuator model is optimized using a parallel genetic algorithm. Some design parameters of vertical length of permanent magnet, horizontal length of plunger, and depth of permanent magnet actuator are predefined for an optimal design of permanent magnet actuator model. Furthermore dynamic characteristics of the optimized permanent magnet actuator model are analyzed by coupled finite element method. A displacement of plunger, flowing current of the coil, force of plunger, and velocity of plunger of the optimized permanent magnet actuator model are compared with the results of a primary permanent magnet actuator model.

Bi-directional Actuator using a permanent magnet and solenoid

  • Kim, K.H.;Kim, D.M.;Lee, S.Q.;D.G. Gweon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.98.1-98
    • /
    • 2001
  • An actuator using a permanent magnet and solenoid is proposed and designed in this paper. Its design concept is composed of a driving force generation, a guide mechanism, and a symmetric structure. At first, Driving Force generation uses a concept that is a change efflux by using a permanent magnet and solenoid. A permanent flux is generated by a permanent magnet. Changeable flux is created by a variable current flowing through coil such the solenoid. The direction of this flux is changed due to current flowing through coils. The combination of permanent and changeable fluxes make various flux densities between yokes of moving part and fixed yokes. And then, the flux densities create forces(F), which are used to drive this actuator, in lower and upper gap. In this actuator ...

  • PDF

Design of ultraprecision hi-directional actuator for nm using a permanent magnet and electromagnet (영구 자석과 전자석의 상호작용을 이용한 초정밀 양방향 구동기 설계)

  • Kim Ki-Hyun;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.147-154
    • /
    • 2005
  • A precision hi-directional actuator for a high precision leveling system with $Z{\Theta}_x{\Theta}_y$ motions is proposed and designed in this paper. The actuator is composed of a force generation structure, a guide mechanism, and a symmetric structure. At first, its driving force is generated by a change of flux in air gaps by permanent and changeable flux. The permanent flux is generated by a permanent magnet. The changeable flux is created by variable current flowing through coil. The combination of permanent and changeable flux makes various flux densities in air gaps between moving part and fixed yokes. And then, the difference between flux densities in lower and upper gaps creates forces fur the $bi-direction({\pm}z)$ motion. The guide mechanism of this actuator is composed of two circular plates and one shaft. Reducing motions generated by forces except z-motion, these circular plates endow the actuator with high stiffness for fast settling time. And the function of the shaft is to transfer motion to an object. At last, total body has a symmetric structure to be stable on thermal error. The actuator is designed by MAXWELL 2D and ProMECHANICA. The designed actuator is evaluated by 8nm laser doppler vibrometer, dynamic signal analyzer, and simple PID controller.

Design and Analysis of a Permanent Magnet Biased Magnetic Levitation Actuator (영구자석 바이어스 자기부상 구동기 설계 및 해석)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.875-880
    • /
    • 2016
  • A new hybrid permanent magnet biased magnetic levitation actuator (maglev) is developed. This new maglev actuator is composed of two C-core electromagnetic cores separated with two permanent magnets. Compared to the conventional hybrid maglev actuators, the new actuator has unique flux paths such that bias flux paths are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The gravity load can be compensated with the permanent magnet bias fluxes developed at off-centered air gap positions while external disturbances are controlled with control fluxes by currents. The consumed power to operate this levitation system can be minimized. 1-D magnetic circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Permanent Magnet Overhang Effect in Permanent Magnetic Actuator Using 3 Dimension Equivalent Magnetic Circuit network Method

  • Lim Seung-Bin;Kwon Ho;Kwon Sam-Young;Choi Seung-kil;Baek Soo-Hyun;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.123-128
    • /
    • 2005
  • This paper presents an analysis of the permanent magnet overhang effect for the permanent magnetic actuator. Generally, the overhang is often used to increase the force density in permanent magnet machineries. The overhang is particularly profitable in reducing the volume after increasing the force density per volume when using the overhang effect of the permanent magnet. Therefore, the 3D Equivalent Magnetic Circuit Network Method (3D EMCN) has been used in this paper. According to the plunger position, the flux distribution per overhang length and the holding force are quantitatively compared. Furthermore, an appropriate length of the overhang has been proposed. To confirm the accuracy of the analysis method, the results of 2D FEM and 3D FEM are compared for the basic model.

Testing and experimental characterization of a linear permanent magnet actuator for active vehicle suspension

  • Wang, Jiabin;Wang, Weiya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.509-516
    • /
    • 2012
  • This paper describes the testing and experimental characterization of a linear permanent magnet actuator, which is designed and developed for active vehicle suspension, under both static and dynamic conditions. Since the active suspension unit operates over a wide force-velocity range with varying duty ratios, it is essential to establish an effective thermal model which can be used for assessing temperature rise of the actuator under various operating conditions. The temperature rise of the actuator is measured and the results are compared with the prediction by the derived transient thermal model. It is shown that the measured actuator parameters and characteristics are closed to their predicted values. The linear actuator is controlled by a dSPACE system via a three phase inverter and its velocity tracking performance is presented.

Characteristic of Moving Coil type Linear Oscillatory Actuator by Multi-Pole Permancent Magnet Arrangement (영구자석 다극 배치에 의한 가동 코일형 리니어 진도 엑츄에이터의 특성)

  • 김덕현;강규홍;홍정표;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.273-281
    • /
    • 2001
  • In order to overcome the demerit and to improve the operation characteristics of Moving Coil type Linear Oscillatory Actuator(MC-LOA) with single-pole permanent magnet, this paper presents two models having the balanced magnetic circuit by multi-pole permanent magnet. They are short coil type with two-pole single-sided and two-ple double-sided permanent magnet. The characteristics between single-pole and multi-pole permanent magnet type MC-LOA are compared. As a result, multi-pole type MC-LOA has more merits than single-pole type about operation characteristics improvement and machine volume. The characteristics analysis is performed by their dynamic analysis composed of kinetic and electric equations and Finite Element Method(FEM). The propriety of multi-pole type MC-LOA model is verified with analysis results.

  • PDF

Magnetic Impact Actuator for Robotic Endoscope (대장내시경을 위한 자기 충격 액츄에이터)

  • 민현진;임형준;김병규;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.839-843
    • /
    • 2001
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes are not seemed to be replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope able to maneuver safely in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfer momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjusting impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulation experiments show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

  • PDF

Analysis and Design of Separated Permanent-Magnet Actuator for 225AF Molded Case Circuit Breaker

  • Park, Hyeon-Jeong;Kim, So-Hyun;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.487-490
    • /
    • 2014
  • The conventional motor-driven MCCB (molded-case circuit breaker) is not only large in size, but also inefficient in performance. To solve these problems, this paper suggests SPMA (separate permanent-magnet actuator), a novel magnetic actuator. In this paper, SPMA is designed for a 225AF MCCB and compared to a conventional motor-driven MCCB and to an EMFA (electro-magnetic force driving actuator)-type MCCB.

Pulsed Actuator with Combined Plunger Made of Carbon Steel and Permanent Magnet

  • Dolezel, Ivo;Panek, David;Ulrych, Bohus
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.282-288
    • /
    • 2012
  • A special pulsed electromagnetic actuator is presented whose plunger consists of two parts made of carbon steel and permanent magnet, respectively. The actuator exhibits a high holding force and small consumption of energy. The movement of the plunger is controlled by short current pulses. The static characteristics and other operation properties of the device are modeled numerically.