• Title/Summary/Keyword: Pesticide resistance management

Search Result 21, Processing Time 0.035 seconds

Survey on Pesticide Use by Ginseng Growers at Gangwon Farmland in Korea (강원도 인삼재배지 농약 사용 실태)

  • Kang, Hye-Soon;Park, Dong-Sik;Hwang, Yun-Kab;Kim, Song-Mun
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.210-215
    • /
    • 2007
  • This study aims to investigate if the properly use of pesticide in Ginseng farmland at Gangwon-do, Korea. Questionnaire included 36 questions such as control method for plant diseases, pests and weeds and pattern of pesticide use was answered by 271 Ginseng farmers lived in 4 cities and 8 counties at Gangwon-do. Ginseng farmers have noxious plant diseases, insects and weeds such as leaf spot, anthracnose, snail, stem-mining fly, horseweed and hairy crabgrass. To control of these, 35% of farmers relied on various type of pesticides and 31.5% of farmers used pesticides mingling with natural enemy, microorganism and organic materials. Farmers selected the pesticide based on the their own experiences or by recommendation of market dealers and neighbors, resulting in the use of inappropriate pesticides in the Ginseng farmland(78.8 % ). They followed standard dosage of the pesticide from Handbook of Pesticide Application(96.3%). They, however, used the same pesticides from 2 to 5 years(44.1 %). This consecutive use of pesticide could be induced resistance. This survey resulted that study for pesticide resistance and systematic educational program for proper use and selection of pesticide to Gingseng farmers should be conducted in farmland at Gangwon-do, Korea.

The Future of Chemical Pest Control

  • Pickett, John-A.;Woodcock, Christine-M.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.304-313
    • /
    • 1992
  • The agricultural industry is beset by continuing demands to decrease the use of pest control agents which employ toxic modes of action. Although there are real problems of pesticide resistance, and sometimes overuse or redistribution in the environment, much criticism results from a lack of appreciation of how small is the risk involved. Whatever the background reasons, research and development for pesticide alternatives, particularly within Integrated Pest Management systems, is clearly of high priority. Currently available approaches, including use of natural products and molecular biology, are often regarded with naive optimism and require critical appraisal. For the future, methods of pest control based on chemicals with non-toxic modes of action (e.g. pheromones) continue to offer promise but, for widespread use, will require their integration with biological agents and development by means of plant molecular biology.

  • PDF

Presticide Resistance Menagement of Pest and Beneficial Arthropods and More Biologically-Based IPM on Apple

  • Croft, B.A.
    • Korean journal of applied entomology
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 1993
  • Resistance evolution to organophosphate-based pesticides in apple and pear inhabiting arthropods of western North America extends to many classes of pest and some beneficial species. Resistance management programs to minimize resistance in pests while exploiting it in natural enemies have met with mixed success. Among beneficials, resistances have been exploited mostly among predators of pest mites. Evolution of resistant mites, leafminers, leafhopper, aphids, leafrollers and some internal fruit feeders have led to development of new monitoring methods and means to delay or avoid resistance. But it is resistance to azinphosmethyl in codling moth (Cydia pomonella) that is changing the pest control system and moving it from chemical to biologically-based means. Newly merging IPM system will depend more on use of biological, cultural, behavior and genetic controls. But more selective pesticides also will be needed to augment pheromones, resistant host plants and genetically altered organisms. These more biologically-based tactics will be prone to resistance evolution in pests as well, if used too unilaterally and/or too extensively.

  • PDF

Selection of low toxic insecticides for phytoseiid predatory mites, Amblyseius cucumeris and Amblyseius fallacis (Amblyseius cucumeris 및 Amblyseius fallacis에 대한 저독성약제 선발)

  • Choi, Byeong-Ryeol;Hilton, S.A.;Broadbent, A.B.
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.296-301
    • /
    • 2003
  • This study was conducted to select low toxic insecticides against natural enemies, and to evaluate resistance stability and cross-resistance to resistance strain for the fulfillment of integrated pest management development. Toxicity of imidacloprid and spinosad to Amblyseius cucumeris was relatively low regardless of the adopting test methods. In addition, those to the Amblyseius fallacis was also low by slide dipping method. The slide dipping method was useful to eliminate repellency effect by mites to the tested insecticides. Mortality of A. fallacis to deltamethrin recorded in 1994 and 1999 was 21.6% and 7.4%, respectively. Meanwhile, the permethrin-resistanct strain of A. fallacis was maintained its resistance to deltamethrin. However, the cross-resistance to the newly introduced insecticides namely imidacloprid, fipronil, chlorfenapyr, abamectin, and spinosad. was relatively low.

Strategy for Insecticide Resistance Management Approach to IPM

  • Motoyama, Naoki;Dauterman, W.C.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.314-327
    • /
    • 1992
  • Insecticide resistance is a serious is a serious threat to IPM, resulting in various adverse effects not to mention the loss of yield in agriculture. One approach to counter the problem is the disruption of resistance mechanisms. This can be achieved by (1) compounds which show a negative correlation with resistance at the site of action, (2) specific metabolic inhibitors which serve as synergists, or (3) a certain combination of two insecticides producing a joint action. This approach, however, requires certain precautions for the side effects may cause an increase in toxicity to mammals. Owing to the recent advances in theoretical studies on resistance management employing computer simulation and mathematical models, a few principles to reduce the risk of development of resistance have been clarified. They are helpful in designing operational strategies with regard to, for instance, insecticide doses to be applied, mode of application, and choice and nature of the insecticide(s) to be used. For restoration of insecticide susceptibility of a resistant population, reintroduction of susceptible individuals to the resistant population is feasible when certain conditions are met. Natural enemies which developed resistance to insecticides can be an important component of IPM as has been shown in the pest management in apple orchards. After all, the implementation of a successful resistance management program depends upon cooperation between different sigments of the agricutural community. Although resistance is a preadaptive phenomenon, in some cases spontaneous loss of resistance does occur without contamination by susceptible individuals. The instability of resistance in these insects implies the possible existence of a switch machanism controlling the expression of resistance gene(s). Elucidation of such a mechanism may eventually provide us with a new technical approach with which we can combat the problem of insecticide resistance.

  • PDF

Resistance development and cross-resistance of green peach aphid, Myzus persicae (Homoptera : Aphididae), to imidacloprid (Imidacloprid에 대한 복숭아혹진딧물의 저항성 발달 및 교차저항성)

  • Choi, Byeong-Ryeol;Lee, Si-Woo;Yoo, Jai-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.264-270
    • /
    • 2002
  • Studies on the resistance monitoring of green peach ahpid, Myzus persicae, its development pattern by artificial selection with imidacloprid and cross-resistance were carried out to develope resistance management strategy. Resistance ratios of M. persicae collected at Hwachon and Dunnae among 5 locations in alpine cultivation area appeared to be high as 37.2 and 16.5, respectively. Resistance of aphid to imidacloprid developed slowly up to 20 time selection, and after that it grew quickly. Imidacloprid-resistant aphid strain showed low cross-resistance ratios(<10) to most of organophosphates, carbamates, and mixed insecticides except pirimicarb(487.8), but high ratios to acetamiprid(143.0) which is one of the neonicotinoids like imidacloprid, and pyrethroids such as deltamethrin(14.9), flucythrinate(12.9) and halothrin(15.9).

Review of fungicide resistance problems in Korea (국내 살균제 저항성 문제의 현황과 전망)

  • Kim, Choong-Hoe
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • Fungicide resistance study in Korea is still in its infancy, and most of those resistance studies are largely limited to newness of the detected resistant strains. In future, detection of fungicide-resistant strains has to be based on sensitivity distribution of pathogen populations to certain fungicides, and standard levels of certain fungicides for resistance should be determined under the basis of this data. Most of the early research on fungicide resistance in Korea has overlooked this point, and resulted in inconsistency and confusion for monitoring sensitivity shift of pathogen population among individual researchers. Fungicide resistance detected in vitro tests has to be documented in field trials by examining control efficacy against resistant and wild-type pathogen populations. Resistance detection in wife has to be correlated with lower activity in practice. Using this process, fungicide resistance will have a practical meaning. Fitness evaluation of resistant strains for survival is, in particular, of importance to determine the future stability of the resistance in the pathogen population. In fields, sensitivity change of pathogen populations should be carefully monitored with and without fungicide selection pressures to establish long-term management strategies against fungicide resistance. It is becoming an urgent task to provide information through research for designing and implementing successful counter-measures against fungicide resistance problems in Korea.

  • PDF

Statuses and Perspectives of Herbicides Development Against Herbicide-Resistant Weeds in Paddy Field of Korea (논 제초제 저항성 잡초 발생에 따른 제초제 개발 현황과 방향)

  • Park, Tae-Seon
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The widespread and diverse sulfonylurea (SU) resistance problem has found in Korea, where one-shot-treatment herbicides such as pylazosulfuron/molinate and bensulfuron/molinate have been used continuously since 1989. The SU-resistant weeds of 7 annual weeds and 3 perennial weeds as of 2008 have confirmed in paddy fields in Korea. An effective management to SU-resistant weeds requires an integrated approach toward the weed control system, in particular, as to the drastic changes of herbicides development. Recent trend of new paddy herbicides in Japan has been developing to maximize the management of SU-resistant weeds. In the future, it is expected that the development of paddy herbicides in Korea is likely to be shifted toward the new "one-shot-treatment" included with herbicides of over 3-ways to maximize the control of resistant weeds. Bromobutide and carfentrazone are effective against sedges and broad-leaved weeds, respectively, and benzobicyclone and pyrimisulfam are effective against sedges and broad-leaved weeds.

Analysis of Pyrethroid Resistance Allele in Malaria Vector Anopheles sinensis from Malaria High-risk Area (말라리아 위험지역에서 채집된 말라리아 매개모기 Anopheles sinensis의 피레스로이드계 저항성 대립형질 분석)

  • Choi, Kwang Shik;Lee, Seung-Yeol;Hwang, Do-Un;Kim, Heung-Chul;Chang, Kyu-Sik;Jung, Hee-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Malaria is mainly transmitted by Anopheles sinensis which is dominant species in malaria high-risk area, northern part of Gyeonggi province in Korea. Pyrethroid insecticide is used for malaria vector, An. sinensis in Korea and the previous investigation consistently reported insecticide resistance from the vector. This study investigated insecticide susceptible and resistant alleles from An. sinensis and the status of malaria vector control in malaria high-risk area. For the study, An. sinensis collected from Paju, Gimpo and Ganghwa were sequenced for kdr detection. In Paju, there was no homozygous susceptibility and all of tested samples had homozygous or heterozygous resistance. There were 6.7% for susceptible homozygosity and 93.3% for resistant homozygosity or heterozygosity in Gimpo. Furthermore, the percentages of homozygous susceptibility and homozygous or heterozygous resistance in Ganghwa were 5.7% and 94.3% respectively. The results showed that the frequency of the insecticide resistance from An. sinensis in malaria high-risk area were increased much more than the previous investigation. Hence, this study suggests that malaria vector control programs should have to be prepared for the management of pyrethroid insecticide resistance.

Management of the Development of Insecticide Resistance by Sensible Use of Insecticide, Operational Methods (실행방식 측면에서 살충제의 신중한 사용에 의한 저항성 발달의 관리)

  • Chung, Bu-Keun;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.48 no.2
    • /
    • pp.123-158
    • /
    • 2009
  • An attempt was made to stimulate future research by providing exemplary information, which would integrate published knowledge to solve specific pest problem caused by resistance. This review was directed to find a way for delaying resistance development with consideration of chemical(s) nature, of mixture, rotation, or mosaics, and of insecticide(s) compatible with the biological agents in integrated pest management (IPM). The application frequency, related to the resistance development, was influenced by insecticide activity from potentiation, residual period, and the vulnerability to resistance development of chemical, with secondary pest. Chemical affected feeding, locomotion, flight, mating, and predator avoidance. Insecticides with negative cross-resistance by the difference of target sites and mode of action would be adapted to mixture, rotation and mosaic. Mixtures for delaying resistance depend on each component killing very high percentage of the insects, considering allele dominance, cross-resistance, and immigration and fitness disadvantage. Potential disadvantages associated with mixtures include disruption of biological control, resistance in secondary pests, selecting very resistant population, and extending cross-resistance range. The rotation would use insecticides in high and low doses, or with different metabolic mechanisms. Mosaic apply insecticides to the different sectors of a grid for highly mobile insects, spray unrelated insecticides to sedentary aphids in different areas, or mix plots of insecticide-treated and untreated rows. On the evolution of pest resistance, selectivity and resistance of parasitoids and predator decreased the number of generations in which pesticide treatment is required and they could be complementary to refuges from pesticides To enhance the viability of parasitoids, the terms on the insecticides selectivity and factors affecting to the selectivity in field were examined. For establishment of resistant parasitoid, migration, survivorship, refuge, alternative pesticides were considered. To use parasitoids under the pressure of pesticides, resistant or tolerant parasitoids were tested, collected, and/or selected. A parasitoid parasitized more successfully in the susceptible host than the resistant. Factors affecting to selective toxicity of predator are mixing mineral oil, application method, insecticide contaminated prey, trait of individual insecticide, sub-lethal doses, and the developmental stage of predators. To improve the predator/prey ratio in field, application time, method, and formulation of pesticide, reducing dose rate, using mulches and weeds, multicropping and managing of surroundings are suggested. Plant resistance, predator activity, selective insect growth regulator, and alternative prey positively contributed to the increase of the ratio. Using selective insecticides or insecticide resistant predator controlled its phytophagous prey mites, kept them below an economic level, increased yield, and reduced the spray number and fruits damaged.