• Title/Summary/Keyword: Phase Inversion Temperature

Search Result 72, Processing Time 0.027 seconds

Emulsion Inversion and Emulsion Transition (에멀젼 변환과 에멀젼 전이)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.267-273
    • /
    • 2004
  • It has been 40 years since emulsion inversion was observed. Emulsion inversion is a phenomenon in which O/W emulsion inverts to W/O emulsion or vice versa. In other words, the dispersed and continuous phase of an emulsion is reversed after emulsion inversion takes place. For three-phase emulsions, not only emulsion inversion but also emulsion transition has been observed. In emulsion transition the continuous phase of an emulsion remains unchanged, but the dispersed emulsion drops, which is basically a two-phase emulsion, experience emulsion inversion at a certain temperature. Such temperature is called the emulsion transition temperature. Emulsion transition was a product of theoretical speculation and was experimentally observed for a couple of ternary amphiphile/oil/water systems. This phenomenon is a novel one, which has been unreported to date. In this article emulsion inversion and emulsion transition are compared and discussed.

Effect of Polar Components on Phase Inversion Temperatures in Systems Containing Nonionic Surfactants and Nonpolar Oils (비이온성 계면활성제, 비극성 오일을 포함한 계에서의 극성 성분의 Phase Inversion Temperature에 대한 영향)

  • Lim, Jong-Choo;Mori, Fuyuhiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.274-284
    • /
    • 1994
  • Phase Inversion Temperature (PIT) measurements showed that the addition of polar components such as oleyl alcohol and oleic acid to the system comprising n-dodecylpentaoxyethylene monoether ($C_{12}E_5$), nonpolar oil (n-hexadecane) and water produced large reductions in the PIT. The PIT was lowered as the additive-to-surfactant ratio in the surfactant films in the microemulsion phase was increased. Another dramatic effect of additive was the manner in which it affects the volume of the microemulsion phase at the PIT of the oil and water solubilization characteristics. Microemulsion phase volume was increased rapidly with decreasing PIT, i.e., with increasing amounts of additive in the system. Also with a decrease in PIT, the solubilization parameters of both oil and water in the microemulsion phase were strikingly increased. Even though soil removal data were not available for the conditions where our results obtained, PIT measurement seems a useful starting point for estimating conditions when middle-phase microemulsion formation and its associated high solubilization of oil can be expected.

  • PDF

The effect of thermodynamic stability of casting solution on the membrane inversion process morphology and permeation properties in phase inversion process

  • Kim, Jeong-Hoon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.26-27
    • /
    • 1995
  • Most of synthetic polymeric membranes used in ultrafiltration, reverse osmosis and microfiltration processes are prepared by phase inversion(or phase separation) technique. In this technique, a homogeneous polymer solution is cast into thin film or hollow fiber shape and then immersed into a nonsolvent coagulant bath. The exchange of solvent and nonsolvent across the interface between casting solution and coagu!ant can make the casting solution phase-separate and form a membrane with a symmetric or asymmetric structure. Because of importance of this technique in membrane field, many investigations have been dedicated to elucidate the mechanism of membrane formation by phase inversion technique.[1-10] These investigation have suggested that the structure formation and permeation properties of phase inversion membrane depend on the variables such as the nature and content of casting solution and coagulant, temperature of casting solution and coagulant, and the diffusional exchange rate of solvent and nonsolvent etc. which can be related to the thermodynamic and kinetic properties of the casting system. The variables such as the nature and content of casting solution can also be the important factor affecting the structure formation and permeation property of the phase inversion membrane.

  • PDF

SRS Inversion of Flame Temperature/concentration Profile with Radiation/Turbulence Interaction (복사/난류간 상호작용이 고려된 화염의 온도 및 농도분포의 SRS 역계산)

  • Ko, Ju-Yong;Kim, Hyun-Keol;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.891-897
    • /
    • 2006
  • The SRS method is applied to a turbulent flame with radiation/turbulence interaction to invert the temperature and concentration profile. The flame is conditioned as optically thin per each fluctuation length and the flame spectral intensity is measured for inversion. From inversion result, we find that SRS can successfully invert the coupled temperature/concentration fluctuation amplitudes. For two cases of experiments, inverted values are within approximately 1% over the full range of fluctuation amplitude. However, SRS cannot find the detailed local fluctuation parameters such as pattern and phase, etc. as far as they do not affect the resulting radiation intensity. Important available parameters are the mean temperature and the temperature fluctuation amplitude. The radiation/turbulence interaction effect is verified to play an important role in the radiation.

Candelilla Wax Nanoemulsions Prepared by Phase Inversion Composition (PIC) Method

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • Candelilla wax-in-water nanoemulsions stabilized by Span 80/Tween 80 were prepared by the phase inversion composition (PIC) method. Stable nanoemulsions with droplet diameters below 50 nm could be formed when the hydrophilic-lipophilic balance (HLB) values were between 13.5 and 14.5, surfactant concentration was 5.0 wt%, and the surfactant-wax ratio was 1:1. Increased emulsification temperature and cooling rate were found to improve the emulsion properties. Process of PIC (adding aqueous phase to the wax phase) produced smaller droplet size nanoemulsion compared to the process of adding wax phase to the aqueous phase. The stability of these nanoemulsions was assessed by following the change in droplet diameters with time of storage at room temperature (${\sim}25^{\circ}C$). The size remained constant during 2 months storage time.

Formation of W/O/W Emulsions in W/O Emulsions (W/O형 에멀젼 중의 O/W/O형 에멀젼 생성)

  • 하영득;강우원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.612-616
    • /
    • 1990
  • The addition of water into oil phase containing hydrophobic emulsifier while stirring forms W/O emulsions. When dispersed phase increase up to a certain extent, phase inversion into O/W emulsions occurs and just before phase inversion O/W/O emulsions exist in a mixed state with W/O emulsions. Thus this experiment was carried out to examine O/W/O emulsions formation in W/O emulsions. The viscosity of sample emulsions(water phase: $H_2O$, oil phase : TGCR-containing olive oil) was measured at the shear rate of 1.92 to 384 per second and at temperature of 25$\pm$0.1$^{\circ}C$, and the development of O/W/O emulsions evaluated from the difference between theoretical and measured values by substituting measured value for Mooney's equation. The formation of O/W/O emulsions tended to be high in sample emulsions just before phase inversion and increase with decreasing TGCR concentrations. This result suggests that high viscosity observed right before phase inversion may also be caused by the formation of O/W/O emulsions.

  • PDF

Cellulose acetate membrane preparation by phase inversion to estimate optimized parameters and its performance study

  • Katariya, Heena N;Patel, Tejal M
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.139-145
    • /
    • 2022
  • Development in advanced separation processes leads to the significant advancement in polymeric membrane preparation methodology. Therefore, present research investigated the preparation and characterization of cellulose acetate membrane by phase inversion separation method to determine optimized operating parameters. Prepared CA membrane's performance was been analyzed in terms of % rejection and flux. Investigation was conducted to study effect of different parameters such as polymer concentration, evaporation rate, thickness of film, coagulation bath properties, temperature of polymer solution and of the coagulation bath etc. CA membrane was fabricated by taking polymer concentration 10wt% and 11wt% with zero second evaporation time and varying film thickness over non-woven polyester fabric. Effect of coagulation bath temperature (CBT) and casting solution temperature were also been studied. The experimental results from SEM showed that the surface morphology had been changed with polymer r concentration, coagulation bath and casting solution temperature, etc. Lower polymer concentration leads to lower precipitation time giving porous membrane. The prepared membrane was tested for advanced waste water treatment of relevant effluent stream in pilot plant to study flux and rejection behavior of the membrane.

Preparation and Characterization of Microfiltration Membranes for Water Treatment (수처리용 정밀여과 멤브레인의 제조 및 특성 연구)

  • Jung, Boram;Kim, Nowon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.50-62
    • /
    • 2014
  • An asymmetric microfiltration membranes were prepared with polysulfone by an immersion precipitation phase inversion method. Microfiltration membranes were prepared by polysulfone/N-methyl-2-pyrrolidone/polyvinylpyrrolidone/phosphoric acid casting solution and water coagulant. The vapor induced phase inversion method was used to prepare the membranes. The pore size and the morphology were changed by the phosphoric acid additive, the temperature of casting plate and the exposure time at the relative humidity of 74%. The morphology of membranes was investigated by scanning electron microscopy and microflow permporometer. By the addition of the phosphoric acid additive in the casting solution, the morphology of the prepared membranes were changed from a dense sponge structure to a loose asymmetric sponge structure. Due to the addition of catalytic amount of phosphoric acid to NMP casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 3,000 LMH. The temperature of casting plate and exposure time had a apparent effect on the skin layer structure and the pore size and the porosity of the membrane.

Selective Adsorption of a Symmetrie Theophylline Imprinted Membrane Prepare by a Wet Phase Inversion Method (습식 상 전이법으로 제조된 Theophylline 각인 대칭 막의 선택적 흡착)

  • 박중곤;오창엽;서정일
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.207-211
    • /
    • 2002
  • The theophylline imprinted membrane was prepared by a wet phase inversion method. Theophylline was implanted during copolymerization of acrylonitrile with acrylic acid or implanted in the dimethyl sulfoxide solution containing10 wt% copolymer, p(AN-co-AA). Rolling the glass plate, on which the copolymer solution was cast, in water removed the sponge layer and thus made the membrane symmetric. The adsorption selectivity of the membrane toward template molecule was increased with the coagulation temperature of the membrane and the initial concentration of the theophylline and caffeine mixture.