• Title/Summary/Keyword: Phasor Method

Search Result 75, Processing Time 0.031 seconds

High Frequency Noise Reduction Method Using a Newly Designed Low-pass Filter in DFT-Based Phasor Estimation (DFT 기반 페이저 연산 시 새로운 저역통과필터를 이용한 고주파 노이즈 경감 방법)

  • Baek, Min-Woo;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.898-904
    • /
    • 2017
  • DFT(Discrete Fourier Transform) is one of the most widely used method to estimate the phasor of a relaying signal. The harmonics are eliminated by the DFT. However, high frequency components, except for harmonics, are not removed and cause an error in DFT-based phasor estimation process. This paper suggests high frequency noise reduction method by using a newly designed low-pass filter to estimate a signal phasor. When selecting a stop-band cut-off frequency of the low-pass filter, high frequency components generated by faults are considered. To reduce the phasor estimation delay caused by a low-pass filter, this paper proposes a low-pass filter whose settling time is reduced. An adverse effect of high frequency noise on DFT-based phasor estimation is reduced. To evaluate the performance of the proposed method, signals which are collected under a fault condition at a 345[kV] transmission system modeled by EMTP-RV are used.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Frequency - Adaptive Phasor Estimation Method Based on Fourier Transform (퓨리에 변환 기반 주파수 적응형 Phasor 연산 기법)

  • Kim, Su-Hwan;Choi, Chang-Young;Hur, Min;Ji, Sung-Yong;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.197-198
    • /
    • 2008
  • Even if the DFT calculation is one of the general method to do phasor estimation, it can't adapt to alteration of the frequency. The Frequency is fastened to 60Hz in the ideal power system. However the frequency is not constant in real power system and fluctuates more followed by conditions of the power system. In these cases, the accurate phasor estimation is impossible by using a common DFT calculation, so that a frequency - adaptive phasor estimation method based on the fourier transform is proposed in this paper.

  • PDF

A Study on Accurate Phasor Extraction Using a New DC Offset Elimination Filter (새로운 직류 옵셋 제거 필터에 의한 정확한 페이저 추출에 관한 연구)

  • Park, Chul-Won;Yoon, Hee-Whan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.29-36
    • /
    • 2013
  • In this paper, a new DC offset elimination filter is proposed for an accurate phasor extraction of fundamental frequency component. The proposed method can eliminate a DC offset component which is decayed exponentially. The proposed method uses only one cycle of data for phasor extraction computation, which does not need to preset the time constant of the DC offset component. Also, the other advantages of the proposed method is that gain compensation or phase compensation is not required after filtering. Simulations using ATP were performed to evaluate the performance of the proposed filter method, and the results were compared to the ones obtained by conventional methods.

Phasor Estimation Algorithm Based on the Least Square Technique during CT Saturation

  • Lee, Dong-Gyu;Kang, Sang-Hee;Nam, Soon-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.459-465
    • /
    • 2011
  • A phasor estimation algorithm based on the least square curve fitting technique for the distorted secondary current due to current transformer (CT) saturation is proposed. The mathematical form of the secondary current during CT saturation is represented as the scaled primary current with magnetizing current. The information on the scaled primary current is estimated using the least square technique, with the measured secondary current in the saturated section. The proposed method can estimate the phasor of a fundamental frequency component during the saturated period. The performance of the algorithm is validated under various fault and CT conditions using a C400 CT model. A series of performance evaluations shows that the proposed phasor estimation algorithm can estimate the phasor of the fundamental frequency component with high accuracy, regardless of fault conditions and CT characteristics.

Distance Relaying Algorithm Using a DFT-based Modified Phasor Estimation Method (DFT 기반의 개선된 페이저 연산 기법을 적용한 거리계전 알고리즘)

  • Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1360-1365
    • /
    • 2010
  • In this paper, we propose a distance relaying algorithm using a Discrete Fourier Transform (DFT)-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Most distance relays are based on estimating phasors of the voltage and current signals. A DFT is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. For this reason, distance relays have a tendency to over-reach or under-reach in the presence of DC offset components in a fault current. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. The error due to DC offsets in a DFT is calculated and eliminated using the outputs of an even-sample-set DFT and an odd-sample-set DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated for a-phase to ground faults on a 345 kV, 50 km, simple overhead transmission line. The Electromagnetic Transient Program (EMTP) is used to generate fault signals. The evaluation results indicate that adopting the proposed algorithm in distance relays can effectively suppress the adverse influence of DC offsets.

Phasor Estimation Method Eliminating the Effect of the DC offsets (DC 옵셋의 영향을 제거한 페이저 연산 기법)

  • Lee, Dong-Gyu;Kim, Hyung-Kyu;Kwon, Young-Jin;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.203_204
    • /
    • 2009
  • In this paper, we propose a Fourier transform-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Discrete Fourier Transform (DFT) is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. In this paper, the error due to DC offsets in a DFT is calculated and eliminated using the outputs of quaternity DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated by using computer-simulated signals and EMTP-generated signals. A performance evaluation showed that the proposed algorithm was not affected by system and fault conditions. Thus, the proposed algorithm can effectively suppress the adverse influence of DC offsets in a relaying signal.

  • PDF

Algorithm for Fault Location Estimation on Transmission Lines using Second-order Difference of a Positive Sequence Current Phasor

  • Yeo, Sang-Min;Jang, Won-Hyeok;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.499-506
    • /
    • 2013
  • The accurate estimation of a fault location is desired in distance protection schemes for transmission lines in order to selectively deactivate a faulted line. However, a typical method to estimate a fault location by calculating impedances with voltages and currents at relaying points may have errors due to various factors such as the mutual impedances of lines, fault impedances, or effects of parallel circuits. The proposed algorithm in this paper begins by extracting the fundamental phasor of the positive sequence currents from the three phase currents. The second-order difference of the phasor is then calculated based on the fundamental phasor of positive sequence currents. The traveling times of the waves generated by a fault are derived from the second-order difference of the phasor. Finally, the distance from the relaying point to the fault is estimated using the traveling times. To analyze the performance of the algorithm, a power system with EHV(Extra High Voltage) untransposed double-circuit transmission lines is modeled and simulated under various fault conditions, such as several fault types, fault locations, and fault inception angles. The results of the simulations show that the proposed algorithm has the capability to estimate the fault locations with high speed and accuracy.

A Real-Time Generator Swing Prediction using Phasor Measurement Units (PMU를 이용한 실시간 전기 동요 예측)

  • Cho, Ki-Seon;Kim, Hoi-Cheol;Lee, Ki-Song;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.92-94
    • /
    • 2001
  • This paper investigated the real-time generator swing prediction by some researchers. And the first swing stability assessment based on EAC(Equal-Area Criterion) by using phasor measurement unit is proposed. Also we proposed the multi-swing prediction techniques, which is to estimate system parameters by using least square method / extrapolation with phasor measurement units. And the multi-swing prediction is performed with the estimated parameters. Future works are necessary to verify the proposed approaches in this paper.

  • PDF

Fourier Transform-Based Phasor Estimation Method Eliminating the Effect of the Exponentially Decaying DC offsets (지수 감쇄하는 DC 옵셋 영향을 제거한 푸리에 변환 기반 페이져 연산 기법 기법)

  • Lee, Dong-Gyu;Kim, Cheol-Hun;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1485-1490
    • /
    • 2008
  • This paper proposes a new Fourier transform-based phasor estimation method to eliminate the adverse influence of the exponentially decaying dc offsets when Discrete Fourier Transform (DFT) is used to calculate the phasor of the fundamental frequency component in a relaying signal. By subtracting the result of odd-sample-set DFT from the result of even-sample-set DFT, the information of dc offsets can be obtained. Two dc offsets in a relaying signal are treated as one dc offset which is piecewise approximated in one cycle data window. The effect of the dc offsets can be eliminated by the approximated dc offset. The performance of the proposed algorithm is evaluated by using computer-simulated signals and EMTP-generated signals. The algorithm is also tested on a hardware board with TMS320C32 microprocessor. The evaluation results indicate that the proposed algorithm has the stable and accurate eliminating performance even if the input signal contains two decaying dc components having different time constants.