• Title/Summary/Keyword: Phosphatidylinositol

Search Result 281, Processing Time 0.025 seconds

Analysis of Phosphatidylinositol 3,4,5-Trisphosphates of PTEN Expression on Mammalian Cells

  • Jahan, Nusrat;Park, Taeseong;Kim, Young Hwan;Lee, Dongsun;Kim, Hackyoung;Noh, Kwangmo;Kim, Young Jun
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.41-46
    • /
    • 2013
  • The goal of this study is to find an experimental condition which enables us to perform enzymatic studies on the cellular behavior of PTEN (phosphatase and tensine homolog) through identification of molecular species of phosphatidylinositol 3,4,5-trisphosphates and their quantitative analysis in a mammalian cell line using mass spectrometry. We initially exployed a two-step extraction process using HCl for extraction of phosphatidylinositol 3,4,5-trisphosphates from two mammalian cell lines and further analyzed the extracted phosphatidylinositol 3,4,5-trisphosphates using tandem mass spectrometry for the identification of them. We finally quantified the concentration of phosphatidylinositol 3,4,5-trisphosphates using internal standard calibration. From these observation, we found that HEK 293-T cells is a good model to examine the enzymatic behavior of PTEN in a cell, and the minimum amount of phosphatidylinositol 3,4,5-trisphosphates is more than 50 pmol for quantification in a mass spectrometer. These results suggest that the well-optimized experimental conditions are required for the investigation of the cellular PTEN in terms of the catalytic mechanism and further for the detailed identification of cellular substrates.

Polyphosphoinositides Are Derived from Ether-linked Inositol Glycerophospholipids in Rat Brain

  • Shin, Sun-H.;Kim, Jong-S.;Kim, Hak-R.;Lim, Jin-K.;Choi, Byung-K.;Yeo, Young-K.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.360-365
    • /
    • 2005
  • Membrane inositol glycerophospholipid (IGP) is metabolized to phosphatidylinositol-4-phosphate (PIP), phosphatidylinositol-4, 5-bisphosphate ($PIP_2$), and inositol triphosphate ($IP_3$) in signaling transduction. This study was carried out to determine the subclasses of IGP involved in signaling pathway. The acyl chain moieties of the phospholipids are easily modulated by dietary fatty acids. We analyzed acyl chain composition of IGP 3-subclasses, PIP and $PIP_2$ from rat brain after feeding sunflower seed oil enriched with linoleic acid or fish oil high in eicosapentaenoic acid and docosahexaenoic acid. Long chain polyunsaturated fatty acids (LCPUFA) as eicosapentaenoic acid and docosahexaenoic acid were not incorporated into ether-linked IGP (alkenylacylglycerophosphoinositol and alkylacyl-glycerophosphoinositol), PIP and $PIP_2$, while diacyl-glycerophosphoinositol (GPI) contained high LCPUFA. These results suggest that PIP might be phosphorylated from only the ether-linked IGP (alkenylacyl- and alkylacyl species) but not from diacyl subclass for signals to intracellular responses in the plasma membrane of rat brain.

Comparison of Bradykinin- and Platelet-Derived Growth Factor-Induced Phosphoinositide Turnover in NIH 3T3 Cells

  • Lee, Kee-Ho;Ryu, Yong-Wun;Yoo, Young-Do;Bai, Dong-Hoon;Yu, Ju-Hyun;Kim, Chang-Min
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.549-554
    • /
    • 1996
  • Phosphoinositide turnover in response to platelet-derived growth factor, epidermal growth factor, and bradykinin was evaluated in NIH 3T3 cells. Platelet-derived growth factor and bradykinin induced a significant increase in incorporation of $^{32}P$ into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4.5-bisphosphate ($PIP_2$) in serum-starved NIH 3T3 cells. However, epidermal growth factor increased incorporation of $^{32}P$ into these phosphoinositides by only a small amount. Stimulation with platelet-derived growth factor, not bradykinin, caused a rapid elevation of PI and PIP kinase activities that were maximally activated within 10 min. The maximal levels of their elevation in cells with plateletderived growth factor stimulation were 3.2-fold for PI kinase, and 2.1-fold for PIP kinase. Short term pretreatment of NIH 3T3 cells with phorbol 12-myristate 13-acetate, activator of protein kinase C. caused an approximately 60% decrease in platelet-derived growth factor-induced PI kinase activities, indicating the feedback regulation of phosphoinositide turnover by protein kinase C. These results suggest that although the enhancement of phosphoinositide turnover is a rapidly occurring response in platelet-derived growth factor- or bradykinin-stimulated NIH 3T3 cells, phosphoinositide kinases may be associated with initial signal transduction pathway relevant to platelet-derived growth factor but not to bradykinin.

  • PDF

Detection of Early Intermediates of the Glycosylphosphatidylinositol anchor in Liquid-cultured Arabidopsis

  • Cheong, Jong-Joo;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.9-11
    • /
    • 2015
  • Tissue extracts were prepared from liquid-cultured Arabidopsis and reacted with UDP-[$^3H$]-GlcNAc. Phospholipid fractions were then extracted by butanol partitioning. Consecutive thin-layer chromatography identified two glycolipids sensitive to PI-specific phospholipase C, known as early intermediates in glycosylphosphatidylinositol anchor biosynthesis; phosphatidylinositol N-acetylglucosamine and phosphatidylinositol glucosamine.

Biochemistry and structure of phosphoinositide phosphatases

  • Kim, Young Jun;Jahan, Nusrat;Bahk, Young Yil
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.

PHOSPHATIDYLINOSITOL 3-KINASE REGULATES NUCLEAR TRANSLOCATION OF Nrf2 THROUGH ACTIN REARRANGEMENT

  • Kim, Sang-Geon;Kang, Keon-Wook;Lee, Seung-Jin;Park, Jeong-Weon;Kim, Hye-Jung
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.82-82
    • /
    • 2002
  • Expression of phase II detoxifying genes is regulated by Nrf2-mediated antioxidant response element (ARE) activation. We previously showed that phosphatidylinositol 3-kinase (PI3-kinase) plays an essential role in ARE-mediated rGSTA2 induction by oxidative stress.(omitted)

  • PDF

INVOLVEMENT OF PHOSPHATIDYLINOSITOL 3-KINASE (PI3K) PATHWAY IN H-RAS-INDUCED INVASION AND MOTILITY OF HUMAN BREAST EPITHELIAL CELLS

  • Shin, Il-Chung;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.142-142
    • /
    • 2002
  • Many studies have identified the phosphatidylinositol 3-kinase (PI3K) as a key regulator for various cellular functions including cell survival, growth and motility. We have previously shown that H-ras, but not N-ras, induces invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype.(omitted)

  • PDF

Roles of Phosphatidylinositol 3-Kinase(PI3K) and Rac1

  • Shin, Il-Chung;Kim, Seon-Hoe;Moon, A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.223.1-223.1
    • /
    • 2003
  • Many studies have identified the phosphatidylinositol 3-kinase (PI3K) as a key regulator for various cellular functions including cell survival, growth and motility. We have previously shown that H-ras, but not N-ras. induces invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In the present study, we wished to investigate the functional role of PI3K pathway in H-ra-induced invasive phenotype and motility of MCF10A cells. (omitted)

  • PDF

Involvement of Phosphatidylinositol 3-Kinase in the Insulin Signaling in Preimplantation Mouse Embryos (생쥐 착상전 배아의 인슐린 신호전달 과정에 Phosphatidylinositol 3-Kinase의 관련성)

  • Gye, Myung-Chan;Nah, Hee-Young;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • A phosphatidylinositol 3-kinase (PI3K) is a upstream component of insulin signaling by which protein synthesis can be stimulated in many systems. To elucidate involvement of PI3K and its downstream mammalian target of rapamycin (mTOR) in the insulin signaling in pleimplantation mouse embryos, 8-cell embryos were cultured to blastocysts in the presence or absence of insulin and/or inhibitor drugs. The number of blastomeres per blastocyst, protein synthesis, and protein phosphorylation were examined. There was significant difference in embryonic development to blastocyst stage and hatching was potentiated by the insulin supplementation. The increase in the mean celt numbers per blastocyst was apparent in the insulin culture. Wortmannin, a PI3K inhibitor and rapamycin, an inhibitor of mTOR abolished the stimulatory effect of insulin on morphological development mitosis and protein synthesis. In autoradiography, phosphoproteins pp22 and pp30 which undergo phosphorylation in response to insulin were identified. Taken together, it can be suggested that PI3K and mTOR engaged in insulin signaling in the mouse embryo 8-cell onward and mediate embryotropic offset of insulin.

  • PDF

Purification and Characterization of Membrane-Bound Phosphatidylinositol 4-Kinase from Mouse Brain

  • Lee, Sang-Min;Son, Hyeog-Gin;Lee, Young-Seek;Lee, Kang-Suk;Rhee, Sue-Goo;Cho, Key-Seung
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.555-563
    • /
    • 1996
  • A membrane-bound phosphatidylinositol 4-kinase (PI 4-kinase) was separated in a sucrose gradient and solubilized with 1% Triton X-100 from mouse brain. The enzyme was purified 2,952-fold by various chromatographic techniques including DEAE-cellulose, PI-Sepharose and Sephacryl S-200 gel filtration. The molecular weight of PI 4-kinase was approximately 76 kDa by gel filtration and 70.8 kDa by SDS-polyacrylamide gel electrophoresis. The purified enzyme exhibited specific activity of 11.2 nmol/min/mg protein and pi value of 4.7. Kinetic analysis of the PI 4-kinase indicated apparent $K_m$, values of 190 ${\mu}M$ and 120 ${\mu}M$ for phosphatidylinositol and ATP, respectively. The maximal activity of this purified enzyme was observed at pH 7.4 at an incubation temperature of $37^{\circ}C$. The enzyme activity was significantly activated by $Mg^{2+}$, $Mn^{2+}$ and $Fe^{2+}$, and inhibited severely by $Ca^{2+}$. PI 4-kinase was proved to be pure in its immunoblot test by polyclonal antibody prepared from immunized rabbit sera. By this test, we were able to detect the existence of the same type of PI 4-kinase from other mouse organ tissues, such as liver, heart, kidney and spleen. Furthermore, similar immunoblot analysis with the same antisera recognized the different epitopes of PI 4-kinase proteins from various organs of rabbit, chinese hamster and rat.

  • PDF