• Title/Summary/Keyword: Phosphorus Removal

Search Result 290, Processing Time 0.172 seconds

Effect of the Total Organic Carbon(TOC) on phosphorus removal by Stapylococcus auricularis (Stapylococcus auricularis에 의한 인 제거에서 총유기탄소의 영향)

  • 최석순
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.57-61
    • /
    • 2000
  • Stapylococcus auricularis was used for the simultaneous removal of phosphorus and Total Organic Carbon(TOC) in the wastewater from sewage and various industries. In this study, the characteristics of phosphorus removal was investigated with initial ratio of TOC phosphorus in the synthetic wastewater. When the synthetic wastewater containing 15mg/L of phosphorus was treated under anaerobic and conditions, phosphorus was removed completely within 6 hours of operation. And when the initial ratio of TOC to phosphorus was 30, as high as 10 times the removal rate of phosphorus by Acinetobacter calcoaceticus was achieved. These results implied that a long adaptation time, one of the chief problems in biological phosphorus removal process was overcome.

  • PDF

Nitrogen and Phosphorus Removal Characteristics by the Variation of Aeration Time in SBR (SBR에서 포기기간 변경에 따른 질소.인 제거 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.116-123
    • /
    • 2009
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus by the variation of aeration time in four sequencing batch reactors (SBRs). In R1 which has the shortest aeration time as 1 h, MLVSS concentration in reactor decreased by the wash-out of biomass because of the poor sedimentation. The TOC removal efficiencies were almost similar in 3 reactors except R1. At the low aeration time as 1 h, the nitrification was severely inhibited by the deficiency of oxygen. ${NH_4}^+$-N removal efficiency was decreased by the decrease of aeration time. At the aeration time over 2 h, the phosphorus removal efficiency was not affected by the variation of aeration time. The nitrification was inhibited but the phosphorus release and uptake was not inhibited by the decrease of low aeration time. Therefore, we can see that the phosphorus removal microorganisms are superior to nitrification microorganisms in oxygen utilization.

Experimental determination of design parameters for filtration trench using phosphorus removal granular materials (인 제거 입상소재를 적용한 여과수로 설계인자의 실험적 결정)

  • Jang, Yeoju;Lim, Hyunman;Jung, Jinhong;Ahn, Kwangho;Chang, Hyangyoun;Park, Nari;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • The algal blooms in stagnant streams and lakes have caused many problems. Excessive algae leads to disturbance of ecosystem and overload of water treatment processes. Therefore, phosphorus(P), source of algal blooms, should be controlled. In this study, a filtration trench has been developed to convert dissolved phosphorus into hydroxyapatite(HAP) so that it could be crystallized on the surface of 'phosphorus removal granular material'; and residual particulate phosphorus could be removed by additional precipitation and filtration. The front and rear parts of filtration trench consisted of 'phosphorus removal granular material contact bed' and 'limestone filtration bed', respectively. As a result of the column test using phosphorus removal granular material and limestone serially, $PO_4-P$ was removed more than 90% when EBCT(empty bed contact time) of the contact bed was over 20 minutes; and T-P represented 60% of removal efficiency when total EBCT was over 1.5 hours. The results of column tests to figure out the sedimentation characteristics showed that more than 90% of particulate phosphorus could be removed within 24 hours. It was necessary to optimize the filtration part in order to increase removal efficiency of T-P additionally. Also, it was confirmed through the simulation of Visual MINTEQ that most of particulate phosphorus in the column tests is the form of HAP. Based on the results of the study, it could be suggested that the design parameters are over 0.5 hour of EBCT for phosphorus removal granular material contact bed and over 1.5 hours of EBCT for limestone filtration bed.

Toxic Effects of Heavy Metals on the Growth and Phosphorus Removal Efficiency of Phosphorus Accumulating Microorganisms (PAOs)

  • Sin, Da Hee;Kim, Deok Hyeon;Kim, Jong In;Lee, Moon-Soon;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.673-680
    • /
    • 2013
  • Phosphorus accumulating microorganisms (PAOs) are influenced by various environmental factors and heavy metals. This study was performed to evaluate the effects of the selected heavy metals on the growth and phosphorus removal capacity of Bacillus sp. 3434 BRRJ, Pseudomonas aerunogisa, and Bacillus Subtilis, well known as PAOs. The heavy metals used in this study included Cu, Cd, As, and Zn. The $IC_{50}$ (median inhibition concentration) values of Bacillus sp. 3434 BRRJ for the Cu, Cd, As, and Zn were 8.07 mg $L^{-1}$, 0.18 mg $L^{-1}$, 73.62 mg $L^{-1}$ and 0.25 mg $L^{-1}$, respectively. The $IC_{50}$ values of Pseudomonas aerunogisa for the Cu, Cd, As, and Zn were 4.45 mg $L^{-1}$, 0.16 mg $L^{-1}$, 18.51 mg $L^{-1}$ and 2.34 mg $L^{-1}$, respectively. The $IC_{50}$ values of Bacillus Subtilis for the Cu, Cd, As, and Zn were 3.81 mg $L^{-1}$, 0.18 mg $L^{-1}$, 11.31 mg $L^{-1}$ and 0.47 mg $L^{-1}$, respectively. The phosphorus removal efficiencies of the three bacteria, Bacillus sp. 3434 BRRJ, Pseudomonas aerunogisa, and Bacillus subtilis were 93.12%, 71.81%, and 65.31%, respectively. Based on the results of the three PAOs obtained from the study, it appears that Bacillus sp. 3434BRRJ may have the best results in terms of their growth rate and P removal efficiencies.

Effects of organic/inorganic carbon source on the biological luxury-uptake of phosphorus by cyanobacteria Synechococcus sp. (남조류 Synechococcus sp.의 혐기-호기법에 의한 인 과잉섭취 효율에 미치는 유기/무기 탄소원의 영향)

  • Yu, Mi-Yeong;Kim, Yun-Ji;Choi, Yun-Jeong;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.437-443
    • /
    • 2020
  • Biological phosphorus removal is accomplished by exposing PAO(phosphorus accumulating organisms) to anaerobic-aerobic conversion conditions. In the anaerobic condition, PAO synthesize PHB(polyhydroxybutyrate) and simultaneously hydrolysis of poly-p resulting phosphorus(Pi) release. In aerobic condition, PAO uptake phosphorus(Pi) more than they have released. In this study, cyanobacteria Synechococcus sp., which is known to be able to synthesize PHB like PAO, was exposed to anaerobic-aerobic conversion. If Synechococcus sp. can remove excess phosphorus by the same mechanism as PAO, synergistic effects can occur through photosynthesis. Moreover, Synechococcus sp. is known to be capable of synthesizing PHB using inorganic carbon as well as organic carbon, so even if the available capacity of organic carbon decreases, it was expected to show stable phosphorus removal efficiency. In 6 hours of anaerobic condition, phosphorus release occurred in both inorganic and organic carbon conditions but SPRR(specific phosphorus release rate) of both conditions was 10 mg-P/g-MLSS/day, which was significantly lower than that of PAO. When converting to aerobic conditions, SPUR(specific phosphorus uptake rate) was about 9 mg-P/g-MLSS/day in both conditions, showing a higher uptake rate than the control condition showing SPUR of 6.4 mg-P/g-MLSS/day. But there was no difference in terms of the total amount of removal. According to this study, at least, it seems to be inappropriate to apply Synechococcus sp. to luxury uptake process for phosphorus removal.

Effect of Aeration Intensity on Simultaneous Nitrification and Denitrification Efficiency in the Submerged Moving Media Biofilm Process (완전침지형 회전매체 생물막 공정에서 포기강도 조절이 동시 질산화/탈질 효율에 미치는 영향)

  • Kim, Jun-myoung;Lee, Sang-min;Lim, Kyeong-ho;Kim, Il-gyou;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.273-279
    • /
    • 2008
  • Space separation method that use independent reactor for nitrification and other reactor for denitrification has been commonly used for biological nitrogen removal process like $A^2O$ process. However, this method needs large space and complicate pipelines and time separation method such as SBR process have a difficulty in continuous treatment. Thus biological nitrogen removal process which is capable of continuous treatment, easy opeation and space saving is urgently required. In this research, submerged moving media was used for a biofilm process and suspended sludge was used for biological nitrogen removal at the same time. In particular DO environment by controlling air flow rate was investigated for simultaneous nitrification/denitrification. Total nitrogen removal in aeration rate more than $67L/min{\cdot}m^3$ showed 51~53% and rose to 65%, 70% and 78% in $50L/min{\cdot}m^3$, $58L/min{\cdot}m^3$ and $25L/min{\cdot}m^3$ respectively. Total phosphorus removal was very low about 10~20% more than $67L/min{\cdot}m^3$ aeration rates. But total phosphorus removal roses when reduces aeration rate by $58L/min{\cdot}m^3$ low and it showed total phosphorus removal of 72% in aeration rate $25L/min{\cdot}m^3$.

Elution characteristics of lime-based granular alkaline material and applicability of phosphorus crystallization processes (석회계 입상알칼리재의 용출특성과 이를 이용한 인 결정화공정의 적용성)

  • Chang, Hyang-Youn;Park, Na-Ri;Jang, Yeo-Ju;Ahn, Kwang-Ho;Lim, Hyun-Man;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.577-586
    • /
    • 2017
  • One of the major sources causing eutrophication and algal blooms of lakes or streams is phosphorus which comes from point and nonpoint pollution sources. HAP (hydroxyapatite) crystallization using granular alkaline materials can achieve the decrease of phosphorus load from wastewater treatment plants and nonpoint pollution control facilities. In order to induce HAP crystal formation, continuous supply of calcium and hydroxyl ions is required. In this research, considering HAP crystallization, several types of lime-based granular alkaline materials were prepared, and the elution characteristics of calcium and hydroxyl ions of each were analyzed. Also, column tests were performed to verify phosphorus removal efficiencies of granular alkaline materials. Material_1 (gypsum+cement mixed material) achieved the highest pH values in the column tests consistently, also, Material_2 (gypsum+slag mixed material) and Material_3 (calcined limestone material) achieved over pH 9.0 for 240 hours (10 days) and proved the efficiencies of long-term ion supplier for HAP crystallization. In the column tests using Material_3, considerable pH increase and phosphorus removal were carried out according to each linear velocity and filtration depth. T-P removal efficiencies were 87.0, 84.0, 68.0% and those of PO4-P 100.0, 97.0, 80.0% for linear velocity of 1.0, 2.5, 5.0 m/hr respectively. Based on the column test results, the applicability of phosphorus removal processes for small-scale wastewater treatment plants and nonpoint pollution control facilities was found out.

Magnetite for phosphorus removal in low concentration phosphorus-contained water body

  • Xiang, Heng;Liu, Chaoxiang;Pan, Ruiling;Han, Yun;Cao, Jing
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.163-172
    • /
    • 2014
  • Magnetite was chosen as a typical adsorbent to study its phosphate adsorption capacity in water body with low concentration of phosphorus (below $2mg\;PL^{-1}$). Magnetite was collected from Luoyang City, Henan Province, China. In this research, three factors have been studied to describe the adsorption of phosphate on magnetite, which was solution concentration (concentration ranging from 0.1 to $2.5mg\;PL^{-1}$), suspension pH (1 to 13) and temperature (ranging from $10^{\circ}C$ to $40^{\circ}C$). In addition, the modified samples had been characterized with XRD and FE-SEM image. The results show that iron ions contains in magnetite were the main factors of phosphorus removal. The behavior of phosphorus adsorption to substrates could be fitted to both Langmuir and Freundlich isothermal adsorption equations in the low concentration phosphorus water. The theoretical saturated adsorption quantity of magnetite is 0.158 mg/g. pH has great influence on the phosphorus removal of magnetite ore by adsorption. And pH of 3 can receive the best results. While temperature has little effect on it. Magnetite was greatly effective for phosphorus removal in the column experiments, which is a more practical reflection of phosphorous removal combing the adsorption isotherm model and the breakthrough curves. According to the analysis of heavy metals release, the release of heavy metals was very low, they didn't produce the secondary pollution. The mechanism of uptake phosphate is in virtue of chemisorption between phosphate and ferric ion released by magnetite oxidation. The combined investigation of the magnetite showed that it was better substrate for water body with low concentration of phosphorus.

Enbancement of Treatement Efficiency in a Biological Nutrient Removal Process by addition of Volatile Fatty Acids (휘발성 지방산의 주입을 통한 생물학적 영양염류 제거공정의 효율증진에 관한 연구)

  • Choung, Yoon Kyoo;Ko, Kwang Baik;Kim, Sue Jin;Yim, Seong Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.73-82
    • /
    • 1996
  • The removal efficiencies of organic substrates, nitrogen and phosphorus in the anaerobic-aerobic biological phosphorus removal process were investigated by addition of acetic acid, propionic acid and butyric acid which are normal volatile fatty acids contained in anaerobic digester supernatants. Substrate utilization coefficients for the phosphorus release and uptake were also estimated. The effect of a VFA, which showed higher phosphorus removal efficiency than the other VFAs did, was also studied in an anaerobic-aerobic-anoxic biological nutrient removal process. For the anaerobic-aerobic process added by VFA, the phosphorus removal efficiencies were up to about 68%, 55% and 61% for the reactors of acetic acid, propionic acid and butyric acid added, respectively, which indicates the efficiencies were increased by about 8-21%, comparing to that of 47% for the reactor with no VFA added. There were no significant difference in removal efficiencies for organic substrate and $NH_3-N$ without regard to addition of VFA. However, the removal efficiency of total nitrogen was increased in the case of VFA added, since $NO_3-N$ was less produced. For the anaerobic-aerobic-anoxic process added VFA, the removal efficiencies for $NH_3-N$ and $PO{_4}^{3-}-P$ were increased by 5% and 13%, respectively, comparing with them in the reactors not added VFA.

  • PDF

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.