• Title/Summary/Keyword: Phosphorus and Algae removal

Search Result 34, Processing Time 0.028 seconds

The Removal of Algae and Phosphorus in Eutrophic Waters Using Various Filter Media (몇 가지 여재를 이용한 부영양수 내의 조류 및 인 제거효과)

  • Park, Chae-Hong;Park, Myung-Hwan;Choi, Dong-Ho;Lee, Joon-Heon;Lee, Myung-Hoon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.102-109
    • /
    • 2012
  • In this study, the four different filter media (sponge, volcanic stone, activated carbon and magnesium hydroxide) were tested for the removal of algae and phosphorus in the two eutrophic water samples (natural water and artificial algal culture with BG-11 medium). These filter media were used in the column device as single or combined applications. The effect of the $Mg(OH)_2$ on phosphorus removal was examined using different particle sizes (<2 mm and >2 mm) and concentrations (0, 10, 50 and 100 g $L^{-1}$) of magnesium hydroxide. The removal efficiency of phosphate by magnesium hydroxide was increased with longer experimental time and higher concentration. However, there was no significant difference in the degree of phosphorus removal between any two particle sizes (1 mg P $L^{-1}$: F=0.109, P=0.685; 10 mg P $L^{-1}$: F=1.542, P=0.355). Among the four media, activated carbon showed the most potent effect on the removal of both algae and phosphorus. The highest removal efficiency of algae and phosphorus was obtained by combining four columns of each filter medium. Interestingly, integration of four filter columns showed higher removal efficiency than activated carbon alone. The highest removal efficiency by integrated filter columns seemed to be caused by a synergistic effect of combined activated carbon and magnesium hydroxide.

Rapid Removal of Green Algae by the Magnetic Method

  • Lee, Huk-Hee;Suh, Hyung-Sock;Chang, Tae-Sun
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.151-156
    • /
    • 2012
  • This research described the magnetic method for the rapid removal of green algae in water. We modified the pH, cation concentration, and magnetic powder concentration to discover the best removal performance. In order to rapidly remove green algae from water, we added magnetic powder and chitosan into algae water to make a magnetic substance and this was extracted by a strong neodymium magnet. The optimized conditions were pH of 6.5-7.5, chitosan concentration of 10 mg/L, and magnetite powder concentration of less than 0.05%. A higher removing rate was observed when a higher amount of magnetite or chitosan was used, but the total amounts of phosphorus or nitrogen were not decreased.

A Proposition for the Removal of Algae and Phosphorus from River Water Using Multi-Purpose filtration pond (다목적 여과저류지를 이용한 하천수의 조류와 인 제거방안 제안)

  • Choi, Hong-Gyu;Jeong, Il-Hwa;Bae, Gha-Ram;Park, Jae-Young;Lee, Jong-Jin;Kim, Yong-Woon;Jung, Kwan-Sue;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.525-531
    • /
    • 2013
  • In an effort to find a solution to the eutrophication of major Korean rivers, a method to utilize multi-purpose filtration pond was investigated. As literature showed that oyster shell is known to be the most adequate for the removal of dissolved phosphorus in Korean rivers, batch and column experiments were performed using oyster shell as an adsorbent in this study. The results of the batch experiment showed that the removal of dissolved phosphorus from river water through adsorption as a way of preventing algal growth was not practical. The results obtained from the column experiment, however, suggested that oyster shell may be utilized as an adsorbent under limited conditions. Based on the results of the experiments a methodology was proposed to remove algae from river water through the use of multi-purpose filtration pond. This method involves mechanically removing the accumulated algae cake from the surface of the artificial stream in the pond towards the condensing part located at the lower reach of the stream, where particles gather before the final removal. In addition, employment of oyster shell as an adsorbent in the condensing part allows prevention of phosphorus released from the dead algae re-entering the river water.

Nutrients Removal of Municipal Wastewater and Lipid Extraction with Microalgae (조류를 이용한 하수고도처리 및 지질추출)

  • Park, Sangmin;Kim, Eunseok;Jheong, Weonhwa;Kim, Geunsu;Ahn, Kyunghee;Han, Jinseok;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.796-803
    • /
    • 2012
  • Potential feasibility of nutrients removal and biofuel production with microalgae was evaluated in batch culture. Distribution of microalgae in fresh water including reservoir and river was investigated to search for the species with high content of lipid that could converted into biofuel. Green algae, Chlorella and Scenedesmus sp., these are known as species containing high lipid content for biodiesel production, were observed in both summer and autumn season. However another highly lipid-containing species, botryococcus sp. was not observed in this study. In mixed culture of microalgae using synthesized wastewater medium, green algae were found to be dominant, comparing to other species of diatoms and blue-green algae. And microalgae were also capable of removing nitrogen and phosphorus in batch experiments. During the culture period of 14 days, removal efficiencies of nitrate and phosphorus were 30% and 82%, respectively. Furthermore, content of the intracellular lipid extracted from algae cell was as favorable as 12-30% in the mixed culture where Scenedesmus and Chlorella sp. were dominant. Therefore the mixed culture of microalgae could be applied to biofuel production and tertiary wastewater treatment, even though there are economic barriers to overcome.

High-rate Removal of Algae by Using of Filtration System with Coagulant Addition (응집과 여과를 이용한 조류의 초고속 제어에 관한 연구)

  • Yun, Sang Leen;Kim, Dong Ha;Rhee, Young Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.221-228
    • /
    • 2002
  • Abundant growth of algae in raw water sources caused by eutrophication brings about significant side effects on water supply, such as taste and order problem, oxygen depletion, toxic material secretion, and filter clogging problem in water treatment process, etc. The purpose of this research is to remove the algae and phosphorus compounds in the Pal-dang reservoir promptly by using the upflow filtration system with coagulant addition. The filter tower consisted of sand media and sieve filter with air back-washing process. By using coagulation and filtration with $132{\mu}m$ pore size filter, about 55% and 70% of algae and phosphorus compounds were removed respectively. The experimental conditions were as follows; head loss of 0.2m, linear velocity of 200m/day, and filtration flux of 1000($L/m^2/day$). In the case of filtration with cartridge type filter of $25{\mu}m$ pore size, the filtration flux was about 7800 LMH, and the removal ratios of COD, SS, T-P, and Chlo-a. were 61%, 99%, 54%, and 98%, respectively. However, high pressure air back-washing process with should be required for the maintenance of such high filtration flux.

Evaluation of Operation Parameters for the Removal of Algae by Electro-Coagulation (수계 내 조류 제거를 위한 전기응집 운전 특성 평가)

  • Jeong, Kwon;Kim, Do-Gun;Kim, Seog-Ku;Kim, Weon-Jae;Ko, Seok-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • Electro-coagulation experiments were conducted with aluminum (Al) or iron (Fe) electrode in order to determine the optimal electrode material and operation conditions for algae removal. Al electrode showed higher removal rate of algae than Fe electrode because Al flocs have positive surface charges which electrostatically attract algae species having negative surface charges. Removal rate of algae and total phosphorous (T-P) was increased as current density and electrode area increases. It was also found that initial pH with neutral range was optimum for T-P removal by electro-coagulation. Bench-scale continuous flow experiments consisted of electro-coagulation reactor, agitation tank and settling tank were conducted. In electro-coagulation reactor, a large fraction of Al flocs were distributed to scum layer, due to the gas bubbles generated by electrolysis reaction. In agitation tank, most of Al flocs were settled and the optimal mixing intensity was found to be 50 rpm to achieve good settleability. The removal rate of algae was about 90-95%. Additionally, the removal rate of the T-P and COD was observed to be $73.8{\pm}8.0%$ and $75.0{\pm}3.8%$, respectively. Meanwhile, the removal rate of total nitrogen (T-N) was relatively low at only 24%.

Experimental determination of design parameters for filtration trench using phosphorus removal granular materials (인 제거 입상소재를 적용한 여과수로 설계인자의 실험적 결정)

  • Jang, Yeoju;Lim, Hyunman;Jung, Jinhong;Ahn, Kwangho;Chang, Hyangyoun;Park, Nari;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • The algal blooms in stagnant streams and lakes have caused many problems. Excessive algae leads to disturbance of ecosystem and overload of water treatment processes. Therefore, phosphorus(P), source of algal blooms, should be controlled. In this study, a filtration trench has been developed to convert dissolved phosphorus into hydroxyapatite(HAP) so that it could be crystallized on the surface of 'phosphorus removal granular material'; and residual particulate phosphorus could be removed by additional precipitation and filtration. The front and rear parts of filtration trench consisted of 'phosphorus removal granular material contact bed' and 'limestone filtration bed', respectively. As a result of the column test using phosphorus removal granular material and limestone serially, $PO_4-P$ was removed more than 90% when EBCT(empty bed contact time) of the contact bed was over 20 minutes; and T-P represented 60% of removal efficiency when total EBCT was over 1.5 hours. The results of column tests to figure out the sedimentation characteristics showed that more than 90% of particulate phosphorus could be removed within 24 hours. It was necessary to optimize the filtration part in order to increase removal efficiency of T-P additionally. Also, it was confirmed through the simulation of Visual MINTEQ that most of particulate phosphorus in the column tests is the form of HAP. Based on the results of the study, it could be suggested that the design parameters are over 0.5 hour of EBCT for phosphorus removal granular material contact bed and over 1.5 hours of EBCT for limestone filtration bed.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.

Increased Microalgae Growth and Nutrient Removal Using Balanced N:P Ratio in Wastewater

  • Lee, Seung-Hoon;Ahn, Chi-Yong;Jo, Beom-Ho;Lee, Sang-Ah;Park, Ji-Yeon;An, Kwang-Guk;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • Microalgal cultivation using wastewater is now regarded as essential for biodiesel production, as two goals can be achieved simultaneously; that is, nutrient removal efficiency and biomass production. Therefore, this study examined the effects of carbon sources, the N:P ratio, and the hydraulic retention time (HRT) to identify the optimal conditions for nutrient removal efficiency and biomass production. The effluent from a 2nd lagoon was used to cultivate microalgae. Whereas the algal species diversity and lipid content increased with a longer HRT, the algal biomass productivity decreased. Different carbon sources also affected the algal species composition. Diatoms were dominant with an increased pH when bicarbonate was supplied. However, 2% $CO_2$ gas led to a lower pH and the dominance of filamentous green algae with a much lower biomass productivity. Among the experiments, the highest chlorophyll-a concentration and lipid productivity were obtained with the addition of phosphate up to 0.5 mg/l P, since phosphorus was in short supply compared with nitrogen. The N and P removal efficiencies were also higher with a balanced N:P ratio, based on the addition of phosphate. Thus, optimizing the N:P ratio for the dominant algae could be critical in attaining higher algal growth, lipid productivity, and nutrient removal efficiency.

Application of hybrid material, modified sericite and pine needle extract, for blue-green algae removal in the lake

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.364-373
    • /
    • 2018
  • The present study assessed the efficient removal of nutrients and Chlorophyll-a (Chl-a) by using methyl esterified sericite (MES) and pine needle extracts (PNE), a low cost and abundant green hybrid material from nature. For this purpose, the optimal conditions were investigated, such as the pH, temperature, MES and PNE ratio, and MES-PNE dose. In addition, a Microcystis aeruginosa control using MES-PNE was also analyzed with various inhibition models. The removal of the nutrient and Chl-a onto MES-PNE was optimized for over 95% removal as follows: 2-2.5 for the MES-PNE ratio, 7-8 pH and a $22-25^{\circ}C$ temperature. In this respect, approximately 1.52-2.20 g/L of MES-PNE was required to remove each 1 g of dry weight/L of Chl-a. Total phosphorus (TP) has a greater influence on the increase in Chl-a than total nitrogen (TN) according to the correlation between TN, TP and Chl-a. Moreover, the Luong model was the best model for fitting the biodegradation kinetics data from Chl-a on MES-PNE from lake water. The novel hybrid material MES-PNE was very effective at removing TN, TP and Chl-a from the lake and can be applied in the field.