• Title/Summary/Keyword: Photobioreactor

Search Result 101, Processing Time 0.038 seconds

Optimization of Radiator Position in an Internally Radiating Photobioreactor: A Model Simulation Study

  • Suh, In-Soo;Lee, Sun-bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.789-793
    • /
    • 2003
  • This study focused on the optimization of the illumination method for efficient use of light energies in a photobioreactor. In order to investigate the effect of radiator position, a model simulation study was carried out using Synechococcus sp. PCC 6301 and an internally radiating photobioreactor as a model system. The efficiency of light transfer in a photobioreactor was analyzed by estimating the average light intensity in a photobioreactor. The simulation result, indicate that there exists an optimal position of internal radiators, and that the optimal position varies with radiator number and cell concentration. When light radiators are placed at the optimal position, the average light intensity is about 30% higher than that obtained by placing radiators at the circumstance or center of a photobioreactor. The method presented in this work may be useful for improving light transfer efficiency in a photobioreactor.

Multistage Operation of Airlift Photobioreactor for Increased Production of Astaxanthin from Haematococcus pluvialis

  • Choi, Yoon-E;Yun, Yeoung-Sang;Park, Jong-Moon;Yang, Ji-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1081-1087
    • /
    • 2011
  • An internally radiating photobioreactor was applied for the production of astaxanthin using the unicellular green alga Haematococcus pluvialis. The cellular morphology of H. pluvialis was significantly affected by the intensity of irradiance of the photobioreactor. Small green cells were widespread under lower light intensity, whereas big reddish cells were predominant under high light intensity. For these reasons, growth reflected by cell number or dry weight varied markedly with light conditions. Even under internal illumination of the photobioreactor, light penetration was significantly decreased as algal cells grew. Therefore, we employed a multistage process by gradually increasing the internal illuminations for astaxanthin production. Our results revealed that a multistage process might be essential to the successful operation of a photobioreactor for astaxnthin production using H. pluvialis.

Design of Photobioreactor for Mass Production of Microalgae (미세조류 대량 생산용 광생물반응기 설계)

  • Ahn, Dong-Gyu;Cho, Chang-Gyu;Jeong, Sang-Hwa;Lee, Dong-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.140-153
    • /
    • 2011
  • The objective of this paper is to investigate into the design of photbioreactor for mass production of microalgae. Characteristics of previously developed photobioreactors were examined to obtain design factors, including light transfer, fluid dynamics and metabolic reactions, of the photobioreactor. Design technology of components related to the design factors, such as light sources, photobioreactor cases, spargers, mixer, etc., was discussed to improve the viability and the growth rate of microalgal and productivity of the photobioreactor. Finally a principle direction of the design for an airlift flat plane photobiorectors was investigated.

Culture of Microalgae using Anti-biofouling Photobioreator (Anti-biofouling 광생물반응기를 이용한 미세조류 배양 연구)

  • Nah, In-Wook;Suh, Min-Ho;Ahn, Soo-Han;Hwang, Kyung-Yub
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.561-564
    • /
    • 2011
  • In this study, we carried out the development of high performance photobioreactor, which can be used to develop the biological $CO_2$ fixation technology as well as the renewable biofuels, the microalgae Botryococcus braunii. When B. Braunii was cultured in Anti-biofouling photobioreator, growth rate of it showed about 3 times higher than that of bubble column photobioreactor at the same conditions. In case of photobioreactor without bead, after 3 days culture time, biofouling occur rapidly in wall of the photobioreactor. However, with bead 5% (V/V), biofouling do not occur all experimental days.

Bubble-column Photobioreactor에서의 Astaxanthin 유도배양의 연구

  • Choe, Su-Rim;Seo, In-Su;Lee, Cheol-Gyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.220-223
    • /
    • 2002
  • This study investigated a lab-scale inducing method for efficient astaxanthin accumulation. As a model system. Haematococcus pluvialis was cultivated in 2 liter bubble-column photobioreactors. The astaxanthin - inducing results using high light irradiation were compared with that of the control experiment under standard irradiation (40 ${\mu}E/m^2/s$). After the late linear growth phase (> 20 days). high light energy (230 ${\mu}E/m^2/s$) was supplied to the culture broth for astaxanthin induction. As a result. the dr γ cell weight and the astaxanthin productivity were increased up to 68% and 215%, respectively. higher than those of the control experiment. This result indicates that bubble-column type photobioreactor is a good candidate for mass cultivation of H. pluvialis and high light irradiation is an efficient induction method for astaxanthin accumulation in lab-scale bubble-column photobioreactors.

  • PDF

Photobioreactor Engineering: Design and Performance

  • Suh, In-Soo;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.313-321
    • /
    • 2003
  • This review summarizes the recent advances in high-density algal cultures in the field of algal biotechnology. Photobioreactor engineering for economical and effective utilization of algae and its products has made impressive and promising progress. Bioprocess engineers have expedited the design and the operation of algal cultivation systems. Many of them in use today are open systems due to cost considerations, and closed photobioreactors have recently attracted a considerable attention for the production of valuable biochemicals or for special applications. For high-density cultures, the optimization of environmental factors in the photobioreactors have been explored, including light delivery, CO$_2$and O$_2$gas transfer, medium supply, mixing and temperature. It is expected that further advanced photobioreactor engineering will enable the commercialization of noble algal products within the next decade.

Experimental Study to reveal Optimum Condition of CO2 Supply Membrane at Photobioreactor (광생물반응기의 CO2 공급 멤브레인의 최적 조건 도출을 위한 실험적 연구)

  • Kim, H.N.;Lee, J.H.;Choi, E.J.;Oh, Y.G.;Kim, Jeongbae
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.130-135
    • /
    • 2014
  • This study was performed to reveal the relationships between various gas supply conditions including inlet numbers and positions for Photobioreactor. To do that, this study was installed the experimental apparatus. All experiments were performed for the cases with 1, 2, 3, and 4 inlets and for gas flow rate of 4~8 lpm. Through the experiments, this study showed that the case with 3 or 4 inlets could reduce about 50% of the pressure loss head for all gas path than that of one inlet base case. So, these results can be used as basic data to design the gross or multiple photobioreactor.