• Title/Summary/Keyword: Photon cross-section

Search Result 28, Processing Time 0.059 seconds

Validation of electromagnetic physics models and electron range in Geant4 Brachytherapy application

  • A. Albqoor ;E. Ababneh ;S. Okoor;I. Zahran
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.229-237
    • /
    • 2023
  • The mechanics underlying photon and electron interactions was validated using our developed Brachytherapy computer code for high Dose Rate (HDR). By comparing the photon cross-section utilizing multiple physics libraries in the developed code, the results were benchmarked against experimental and theoretical findings. Klein-Nishina and experimental cross-section results were in good agreement with the Livermore library results. For two therapeutically relevant materials, the first scattered electron range was measured within 1 mm and 2 mm, which has significant implications for the interpretation of the kernel dose spikes observed in previous research.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.

A Study of Dark Photon at the Electron-Positron Collider Experiments Using KISTI-5 Supercomputer

  • Park, Kihong;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.

A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

  • Park, Kihong;Kim, Kyungho;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.

Investigation on Femtosecond Laser Processing of Polymeric Thin Films (펨토초 레이저를 이용한 폴리머 박막 재료 초미세 공정에 관한 연구)

  • Jeoung S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.669-670
    • /
    • 2006
  • Two-photon absorption coefficient of a series of dyes in polymer thin films was determined by measuring the femtosecond laser ablation threshold. The threshold value of polymeric thin films decreased gradually when the dopant increased. The two-photon absorption coefficient of the dye molecules dispersed in the polymer film was estimated by using the theoretical relationship between the ablation threshold of the blended polymeric thin films and the dye concentration. The relative values of two-photon absorption cross-section are in good agreement with those measured in solution. On the other hand, the absolute values are smaller than the latter.

  • PDF

Energy transfer and photon avalanche in Tm3+:LaF3

  • Yoo, Mi-Oh;Lim, Ki-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.10-14
    • /
    • 1997
  • Single pulse laser excitation at 656 nm and successive pulse excitation at 635.2 and 648.4 nm produced blue emission at 480 nm by two-step upconversion process in Tm/sup 3+/:LaF/sub 3/. The excited-state absorption cross-section of the /sup 3/F/sub 4/ to /sup 1/G/sub 4/ transition was estimated by a looping mechanism with cross-relaxation processes. The dynamics of up-conversion andthe possibility of the photon avalanche by a pulse laser excitation were studied by numerical simulation with the rate equation model.

Theoretical Consideration on Influences of Cavity or Pillar Shape on Band Structures of Silicon-Based Photonic Crystals

  • Ogawa, Yoshifumi;Tamura, Issei;Omura, Yasuhisa;Iida, Yukio
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.56-65
    • /
    • 2007
  • This paper describes physical meanings of various influences of cavity (or pillar) shape and filling factor of dielectric material on band structures in two-dimensional photonic crystals. Influences of circular and rectangular cross-sections of cavity (or pillar) arrays on photonic band structures are considered theoretically, and significant aspects of square and triangular lattices are compared. It is shown that both averaged dielectric constant of the photonic crystal and distribution profile of photon energy play important roles in designing optical properties. For the triangular lattice, especially, it is shown that cavity array with a rectangular cross-section breaks the band structure symmetry. So, we discuss this point from the band structure and address optical properties of lattice with a circular cross-section cavity.

Reevaluation of Photon Activation Yields of 11C, 13N, and 15O for the Estimation of Activity in Gas and Water Induced by the Operation of Electron Accelerators for Medical Use

  • Masumoto, Kazuyoshi;Matsumura, Hiroshi;Kosako, Kazuaki;Bessho, Kotaro;Toyoda, Akihiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.286-290
    • /
    • 2016
  • Background: Activation of air and water in the electron linear accelerator for medical use has not been considered severely. By the new Japanese regulation for protection of radiation hazard, it became indispensable to evaluate of activation of air and water in the accelerator room. The measurement of induced activity in air and water components in the electron energy region of 10 to 20 MeV is very difficult, because this energy region is close to the threshold energy region of photonuclear reactions. Then, we measured the photonuclear reaction yields of $^{13}N$, $^{15}O$, and $^{11}C$ by using the electron linear accelerator. Obtained data were compared with the data calculated by the Monte Carlo method. Materials and Methods: An activation experiment was performed at the Research Center for Electron Photon Science, Tohoku University. Highly purified $SiO_2$, $Si_3N_4$, and carbon disks were irradiated for 10 minutes by bremsstrahlung converted by a tungsten plate. Induced activity from C, N, and O was obtained. Monte Carlo calculation was performed using MCNP5 and AERY (DCHAIN-SP) to simulate the experimental condition. Cross section data were adopted the KAERI dataset. Results and Discussion: In our experiment in hospital, calculated values were not agreed with experimental values. It might be three possible reasons as the cause of this deference, such as irradiation energy, calculation procedure and cross section data. Obtained data of this work, calculated and experimental values were good agreement with each other within one order. In this work, we used KAERI dataset of photonuclear reaction instead of JENDL. Therefore, it was found that the photonuclear cross section data of light elements are most important for yield calculation in these reactions. Conclusion: Further improvement for calculation using a new dataset JENDL/PD-2015 and considering electron energy spreading will be needed.

Observation of Strong Coupling between Cavity Photon and Exciton in GaN Micro-rod

  • Gong, Su-Hyun;Ko, Suk-Min;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.297.2-297.2
    • /
    • 2014
  • Strong exciton-photon coupling in microcavities have generated an intense research effort since quasiparticles called exciton polaritons are produced and shows interesting phenomena. Most of studies have been done with GaAs based microcavities at cryogenic temperature. Recently, GaN material which has large exciton binding energy and oscillator strength has much attention because strong coupling between photon and exciton could be realized at room temperature. However, fabrication of high quality microcavity using GaN is challengeable due to the large mismatch between the lattice and the thermal expansion coefficient in GaN based distributed Bragg mirror. Here, we observed strong coupling regime of exciton-photon in GaN micro-rods which were grown by metalorganic vapour phase epitaxy (MOCVD) on Si substrate. Owing to the hexagonal cross-section of micro-rod, whispering gallery modes of photon are naturally formed and could be coupled with exciton in GaN. Using angle-resolved micro-photoluminescence measurement, exciton polariton dispersion curves were directly observed from GaN micro-rod. We expect room temperature exciton polariton condensation could be realized in high quality GaN micro-rod.

  • PDF

Effect of Heat Treatment on Radiation Shielding Properties of Concretes

  • Singh, Vishwanath P.;Tekin, Huseyin O.;Badiger, Nagappa M.;Manici, Tubga;Altunsoy, Elif E.
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.20-28
    • /
    • 2018
  • Background: Heat energy produced in nuclear reactors and nuclear fuel cycle facilities interactions modifies the physical properties of the shielding materials containing water content. Therefore, in the present paper, effect of the heat on shielding effectiveness of the concretes is investigated for gamma and neutron. The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors. Materials and Methods: The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors of ordinary and heavy concretes were investigated using NIST data of XCOM program and Geometric Progression method. Results and Discussion: The improvement in shielding effectiveness for photon and reduction in fast neutron for ordinary concrete was observed. The change in the neutron shielding effectiveness was insignificant. Conclusion: The present investigation on interaction of gamma and neutron radiation would be very useful for assessment of shielding efficiency of the concrete used in high temperature applications such as reactors.