• Title/Summary/Keyword: Photovoltaic efficiency

Search Result 1,175, Processing Time 0.035 seconds

Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor (III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석)

  • Ko, Jae-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

A Study of Korean Efficiency of PV PCS (태양광 인버터의 한국형 전력변환 효율에 관한 연구)

  • Kim, Jeong-Hwan;Yu, Byung-Gyu;So, Jung-Hun;Lee, Ki-OK;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.356-360
    • /
    • 2009
  • Recent global environmental pollution and contamination and depletion of limited fossil energy prices surge as an energy source to replace it depending on wind, fuel cells and solar power and other renewable and pollution free renewable energy is of interest in increase. The photovoltaic systems are pollution-free, unlimited energy source, and easy to install because it is rated as the most valuable renewable energy sector and the prevalence is spreading throughout the world. Photovoltaic systems at one end of the stable development of the role that solar power inverter applications can be the most important. No matter how much power the solar arrays, even if the inverter output in the normally if he's no use. These photovoltaic inverters to evaluate the performance of the inverter efficiency measures that can be called directly. This way of measuring the efficiency of solar inverters in Europe efficiency and CEC efficiency is currently being used. In this paper, until now about how to measure the efficiency of solar power inverter technology and the new Korean Meteorological Solar Insolation data analysis to derive weights based on this inverter efficiency for Korea is to offer.

  • PDF

The New MPPT Algorithm for the Dynamic MPPT Efficiency (다이나믹 MPPT를 적용한 최대전력지점추종 알고리즘)

  • Ko, Suk-Whan;Jung, Young-Seok;So, Jung-Hun;Hwang, Hye-Mi;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • The efficiency of the maximum power point tracking(MPPT) of inverter which is used in grid-connected photovoltaic systems is changed according to dynamic environment conditions. Hence, this paper evaluates the performance of the proposed method and other MPPT algorithm on the basis of European Efficiency Test(EN50530). The modeling of MPPT algorithm is made by the Matlab & Simulink. In the result of simulation, the more control period is shorter, the more MPPT efficiency is higher. Also, the Proposed MPPT algorithm has higher performance than other MPPT algorithm with no regard to control period.

An Efficiency Improvement of the Photovoltaic Generation System by Using the PPT based MPPT Converter (PPT 기반 MPPT 컨버터에 의한 태양광 발전시스템의 효율 개선)

  • Lee, Eun-Chul;Lee, Seong-Ryong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.216-223
    • /
    • 2006
  • In this paper, a methodology for the efficiency improvement of the photovoltaic system without adding some elements or increasing the cost comparing with the conventional system is discussed. It is suggested the optimal photovoltaic module configuration through its performance analysis, and also the suitable maximum power point tracking (MPPT) voltage considered the system cost and the efficiency of the converter. The high efficiency photovoltaic system by using the parallel power transfer (PPT) based MPPT converter is proposed and analyzed theoretically comparing with the conventional Buck type MPPT converter. Finally, it is designed and implemented the proposed photovoltaic system for supplying DC 48V by using the PPT based MPPT converter. And the effect of the efficiency improvement and the usefulness of the proposed system is proved through some preliminary simulation and experiment results.

Performance Comparison of CuPc, Tetracene, Pentacene-based Photovoltaic Cells with PIN Structures

  • Hwang, Jong-Won;Kang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyun;Jo, Young-Ran;Choe, Young-Son
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.311-312
    • /
    • 2010
  • The fabricated photovoltaic cells based on PIN heterojunctions, in this study, have a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)/donor/donor:C60(10nm)/C60(35nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline(8nm)/Al(100nm). The thicknesses of an active layer(donor:C60), an electron transport layer(C60), and hole/exciton blocking layer(BCP) were fixed in the organic photovoltaic cells. We investigated the performance characteristics of the PIN organic photovoltaic cells with copper phthalocyanine(CuPc), tetracene and pentacene as a hole transport layer. Discussion on the photovoltaic cells with CuPc, tetracene and pentacene as a hole transport layer is focussed on the dependency of the power conversion efficiency on the deposition rate and thickness of hole transport layer. The device performance characteristics are elucidated from open-circuit-voltage(Voc), short-circuit-current(Jsc), fill factor(FF), and power conversion efficiency($\eta$). As the deposition rate of donor is reduced, the power conversion efficiency is enhanced by increased short-circuit-current(Jsc). The CuPc-based PIN photovoltaic cell has the limited dependency of power conversion efficiency on the thickness of hole transport layer because of relatively short exciton diffusion length. The photovoltaic cell using tetracene as a hole transport layer, which has relatively long diffusion length, has low efficiency. The maximum power conversion efficiencies of CuPc, tetracene, and pentacene-based photovoltaic cells with optimized deposition rate and thickness of hole transport layer have been achieved to 1.63%, 1.33% and 2.15%, respectively. The photovoltaic cell using pentacene as a hole transport layer showed the highest efficiency because of dramatically enhanced Jsc due to long diffusion length and strong thickness dependence.

  • PDF

CNTs Electric Field Enhancement of CIGS Solar Cells

  • Han, Seong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.67-67
    • /
    • 2011
  • Compound semiconductor/CNTs composites have shown considerably improved efficiency improvement in photovoltaic devices, which is often attributed to two different factors. One is the formation of efficient electronic energy cascade structures. The other effect of CNTs on the performance of photovoltaic devices is the decrement of interfacial resistance. The interfacial resistances at n-type/ p-type materials and/or n-type materials/TCO electrode are reduced by an outstanding electrical property of CNTs. In addition to the effects of CNTs, we report the third reason for increment of efficiency in photovoltaic devices by CNT's well-known electrical field enhancement effects. The improved ${\beta}$ values in reverse-FE currents of CIGS electrode with SWNTs layers indicate the enhancement of electrical field in photovoltaic devices, which implies the acceleration of the electron transfer rate in the cell. Due to the formation of an efficient electronic energy cascade structure and the decrease of the interfacial resistance as well as the improvement of the electrical field in the photovoltaic devices, the power conversion efficiency of electrochemically deposited superstrate-type CIGS solar cells was increased 24.3% in the presence of SWNTs and showed 10.40% conversion efficiency.

  • PDF

Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module (슁글드 모듈 제작을 위한 고효율 실리콘 태양전지의 레이저 스크라이빙에 의한 영향)

  • Lee, Seong Eun;Park, Ji Su;Oh, Won Je;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.291-296
    • /
    • 2020
  • The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.

A Study on the Application Method of Photovoltaic in Building (PV의 건축물 적용기법에 관한 연구)

  • Lee, E.J.;Kim, H.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • This study is a study on the building integrated method of Photovoltaic. It was analyzed into a basic installation condition and an integrated form in this study. And it was confirmed through the 3D simulation & drawing work of an integrated situation to the real domestic building. The Photovoltaic installation of the country to an optimal efficiency for the year must be installed to the due south with an angle of thirty degrees. And also a module spacing must be more than doubled from the bottom to the top of module to prevent from efficiency falling by a shadow of photovoltaic module in a roof setting of flat roof. If Photovoltaic module is an adequate material that is a basic requirement as a building's finishing material, it's not only an efficiency of alternation with an existing finishing material but also a building's design element.

A Study on the Optimal PV-module Design for Efficiency Improvement of Photovoltaic System (태양광발전시스템의 효율 향상을 위한 태양전지 모듈의 최적 설계에 관한 연구)

  • Kim, Min;Lee, Gi-Je;Lee, Jin-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.328-330
    • /
    • 2001
  • The construct of photovoltaic module array, main power source of photovoltaic system, is very important to the efficiency improvement of whole photovoltaic system. Photovoltaic modules are usually connected in series or parallel to meet power capacity required. Since output characteristics of a photovoltaic module are greatly fluctuated on the variation of insolation, temperature and its type, the maximum open circuit voltage and output operating voltage of photovoltaic module array must exist in the admissible input voltage range of inverter system under any operating conditions. In this paper, we present the selection and array method of photovoltaic modules through simulation for the coupling loss reduction between photovoltaic modules and a inverter.

  • PDF

High Efficiency Thin Film Photovoltaic Device and Technical Evolution for Silicon Thin Film and Cu (In,Ga)(Se,S)

  • Sin, Myeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.88-88
    • /
    • 2012
  • High efficiency thin film photovoltaic device technology is reviewed. At present market situation, the industrial players of thin film technologies have to confront the great recession and need to change their market strategies and find technical alternatives again. Most recent technology trends and technical or industrial progress for Silicon thin film and CIGS are introduced and common interests for high efficiency and reliability are discussed.

  • PDF