• Title/Summary/Keyword: Photovoltaic module

Search Result 632, Processing Time 0.028 seconds

A Study on Simulation of Photovoltaic Module for Stand-Alone Photovoltaic System (독립형 태양광시스템에 적용한 태양광 모듈 시뮬레이션에 관한 연구)

  • Hwang, Gye-Ho;Kim, Won-Gon;Yun, Jong-Bo;Moon, In-Ho;Lee, Bong-Seob;Jung, Do-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • This presents the equivalent circuit model of solar cell with irradiation and temperature condition. Based on solar cell model, the photovoltaic module specification of manufacturer compare with photovoltaic module simulation and is investigated by simulation results. The obtained results indicate that residual of simulation value and specification value about photovoltaic module is lower. There is considerable validity in simulation of photovoltaic module. Thus, the optimum simulation of photovoltaic module array are studied in this paper. This paper propose the sizing optimization of photovoltaic module array for stand-alone photovoltaic system. Also, the proposed stand-alone photovoltaic system is setting in special region(in seoul). This paper presents simulation characteristic of optimization output power in seoul.

Distance Between a Wind Turbine and a Photovoltaic Module in a Wind-Photovoltaic Hybrid Generation System (태양광-풍력 하이브리드 발전기에서 태양전지모듈과 풍력발전기 이격거리)

  • Woo, Sang-Woo;Kim, Hong-Woo;Kim, Sung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.58-64
    • /
    • 2009
  • This aim of the study is to demonstrate the effect of a photovoltaic module installed on a small wind-photovoltaic hybrid generation system. Computational fluid dynamics(CFD) is used to interpret the velocity field around the photovoltaic module and the blade areas of a wind turbine. According to the simulation results, it is obvious that x_velocity and y_velocity varies very significantly with time near the photovoltaic module. This would lead to an increase of periodic wind load caused by flow separation at the edge of the photovoltaic module. This study discusses the flow characteristics in term of velocity and frequency analysis. Moreover we suggest a distance between a photovoltaic module and a wind turbine to avoid partially the negative effect caused by the photovoltaic module.

The Characteristics of PV module under the Partial Shading Condition and with a Failure of Bypass Diode with Short (PV모듈의 음영 상태 및 바이패스 다이오드 단락 고장 특성 분석)

  • Ko, Suk-Whan;Ju, Young-Chul;So, Jung-Hun;Hwang, Hye-Mi;Jung, Young-Seok;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.41-47
    • /
    • 2016
  • A bypass diode is connected in parallel to solar cells with opposite polarity. The advantage of using the bypass diode is circumvented a destructive efforts of hot-spot heating in the photovoltaic(PV) module. In addition, it is possible to reduce a energy loss under the partial shading on the PV module. This paper presents a characteristic of photovoltaic module under partial shading condition and with defective bypass diode by using the experimental data. The results of field testing for each photovoltaic modules, when photovoltaic system which is connected power grid is operating, the inner junction-box temperature of shading photovoltaic module is high $5^{\circ}C$ because of difference of flowing current through into bypass diode. And incase of not operating photovoltaic system, the inner junction-box temperature of module with defective bypass diode is greatly higher than partial shading PV module.

A Study on the Mechanical Reliability of Large-area Bi-facial Glass-to-glass Photovoltaic Modules (대면적 양면 태양광 모듈의 기계적 신뢰성 연구)

  • Yohan, Noh;Jangwon, Yoo;Jaehyeong, Lee
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.111-115
    • /
    • 2022
  • For the high efficiency of the photovoltaic module, a high-output solar cell, which is the basis of photovoltaic power generation, is required. As the light receiving area of the solar cell increases, the light receiving area of the photovoltaic module also increases. Accordingly, recent trend is to use large-area solar cells such as M6 and M8 instead of M2-based solar cells for manufacturing the photovoltaic module and a study on the mechanical stiffness of the module with increased size is required. In this study, a mechanical load test corresponding to IEC-61215 was performed among the reliability tests of large-area photovoltaic modules. In order to confirm the degree to which the mechanical load test affects the photovoltaic module, the output and EL images were checked by sequentially increasing the pressure by 600 Pa at a pressure of 2400 Pa. Also, factors such as output and efficiency of large-area photovoltaic modules were verified through mechanical load testing of actual large-area photovoltaic modules and the rate of change was very small at 1%.

Analysis on Power Generation Characteristics of a Vehicle Rooftop Photovoltaic Module with Urban Driving Conditions (도심 주행 조건에 따른 차량 탑재 태양광모듈의 발전특성 분석)

  • Jeon, Seonwoo;Choung, Seunghoon;Bae, Sungwoo;Choi, Jaeyoung;Shin, Donghyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.79-86
    • /
    • 2020
  • This study examines the power generation characteristics of a vehicle rooftop photovoltaic module with urban driving conditions. Actual test data with an illuminometer and a thermometer were used to analyze the power generation characteristics of the vehicle rooftop photovoltaic module. In addition, the power generation characteristics were analyzed in terms of urban driving conditions, irradiance, ambient temperature, and photovoltaic module temperature. This study also analyzes the power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions through a wavelet transform filtering method. The power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions depend on the change in irradiance rather than that in photovoltaic module temperature.

Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics (지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

A Study on the Photovoltaic Module Layout Considering the Azimuth and Inclination in Region (방위각 및 경사각을 고려한 지역별 태양광 모듈 배치안 검토)

  • Park, Sung-Hyun;Seo, Jang-Hoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.461-466
    • /
    • 2012
  • Recently, building energy systems with solar collector and solar module have increased to improve energy problem, a heat island, a global warming and carbon dioxide emissions. In this study, value of solar radiation in areas was analyzed using TRNSYS simulation, and the optimum tilt and orientation angle for installing a photovoltaic module was examined. Average values of the weather data in the past twenty years in areas were used as input data. The results show that the tilt angle of a photovoltaic module for gaining the annual maximum solar radiation varies in different localities, and values of the annual solar radiation gained by using the variable photovoltaic module increased by 2.5 percent as compared with that gained by using the fixed photovoltaic module. When fixed photovoltaic module is installed, it should be examined the tilt and orientation angle for installing a photovoltaic module was examined.

Intelligent Diagnostic System of Photovoltaic Connection Module for Fire Prevention (화재 예방을 위한 태양광 접속반의 지능형 진단 시스템)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • To prevent accidents caused by changes in the surrounding environment or other factors, various protection facilities are installed at the photovoltaic connection module. The main causes of fire are sparks due to foreign substances inside the photovoltaic connection module through high temperature rise and dew condensation in the photovoltaic connection module, and fire due to heat from the power diode. The proposed method can predict the fire by measuring flame, carbon dioxide, carbon monoxide, temperature, humidity, input voltage, and current on the photovoltaic connection module, and when the fire conditions are reached, fire alarm and power off can be sent to managers and users in real time to prevent fire in advance.

A Study on the Optimal PV-module Design for Efficiency Improvement of Photovoltaic System (태양광발전시스템의 효율 향상을 위한 태양전지 모듈의 최적 설계에 관한 연구)

  • Kim, Min;Lee, Gi-Je;Lee, Jin-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.328-330
    • /
    • 2001
  • The construct of photovoltaic module array, main power source of photovoltaic system, is very important to the efficiency improvement of whole photovoltaic system. Photovoltaic modules are usually connected in series or parallel to meet power capacity required. Since output characteristics of a photovoltaic module are greatly fluctuated on the variation of insolation, temperature and its type, the maximum open circuit voltage and output operating voltage of photovoltaic module array must exist in the admissible input voltage range of inverter system under any operating conditions. In this paper, we present the selection and array method of photovoltaic modules through simulation for the coupling loss reduction between photovoltaic modules and a inverter.

  • PDF

Characteristic Evaluation Tools of EVA Sheet for Photovoltaic Module Fabrication (태양전지모듈용 EVA Sheet의 특성 평가 방법)

  • Kang, Kyung-Chan;Lee, Jin-Seob;Kang, Gi-Hwan;Huh, Chang-Su;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.92-97
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. The properties of Ethylene Vinyl Acetate(EVA) sheet in photovoltaic encapsulant materials have to meet conditions that are high optical transmittance, good adhesion and high cross-linking rate. The objective of this paper is to understand the property evaluation methods of EVA sheet. Through this research, we could confirm that properties of EVA sheet have an effect on durability and operating efficiency of photovoltaic module.

  • PDF