• Title/Summary/Keyword: Physiological Stages

Search Result 216, Processing Time 0.026 seconds

A Study on Changes in Human Sensibility Evoked by Imagination (상상으로 유발된 감성 변화에 관한 연구)

  • Chung, Soon-Cheol;Min, Byung-Chan;Jun, Kwang-Jin;Lee, Bong-Soo;Yi, Jeong-Han;Kim, Chul-Jung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.35-46
    • /
    • 2002
  • In this study, emotion changes were induced by four imaginations- pleasantness, unpleasantness, arousal, relaxation and it was examined using subjective evaluation and analysis of the physiological signals of the central and autonomic nerve systems whether the intended emotions were appropriately achieved, and whether these emotion changes could be distinguished from the analysis of physiological signals. Each of the four imaginations was implemented on 32 subjects for 30 seconds, while that Electroencephalogram (EEG), Eelectrocardiogram (RSP) were measured, and a subjective evaluation was implemented following the completion of the measurement. The analysis of the subjective evaluation revealed that the subjects underwent the four clearly differentiated imaginations, and the pleasantness level was classified into four imagination stages, pleasantness>relaxation>arousal=comfort>unpleasantness, and arousal level was classified into four imagination stages in the order of arousal>unpleasantness${\approx}$pleasantness>comfort>relaxation. The analysis of the EEG revealed that three stages of pleasantness level, pleasantness>relaxation=arousal=comfort>unpleasantness were classified from the values of ${\alpha}/{\alpha}+{\beta}\;and\;{\beta}/{\alpha}+{\beta}$, and about tour distinguishable stages of arousal level were obtained from the autonomic nervous system responses following the order of arousal>unpleasantness${\approx}$pleasantness> comfort> relaxation. It was found that intended emotion could be induced from the imagination, and these induced emotion changes could be differentiated using the physiological signals of the EEG and autonomic nervous system.

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

Physiological responses of selected Philippine upland rice genotypes evaluated using drought and salinity stress

  • Zapico, Florence;Aguilar, Catherine Hazel;Laniton, Lyn Jean;Lincay, Reygiene;Duldoco, Roman Abdul Kadir;Leandres, Jacy Deneb
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.306-306
    • /
    • 2017
  • Screening for drought and salinity tolerance was undertaken for selected Philippine upland rice landraces during germinative and seedling stages to identify varieties which can potentially be grown in marginally dry and saline soils. While increasing PEG and NaCl concentrations caused obvious signs of injury to all rice genotypes, considerable varietal differences were noted in the nature of responses providing evidence that these genotypes possess broad intraspecific genetic variations for drought and salt tolerance. Inconsistent responses of these varieties during both growth stages highlight complexities involved in stress responses and underscore the futility of utilizing a single stage in the rice plant's life cycle for physiological screening. Notwithstanding these perplexing responses, G_Katiil and Ml-Pilit Tapul were observed to thrive relatively well despite increased salt and drought stress during early growth stages and may therefore possess genes needed in crop improvement efforts for drought and salinity tolerance. While these results do not reflect the entire spectrum of adaptive expression to drought and salinity stress during the life cycle of the upland rice plant, they nonetheless provide an easy, reliable and reproducible method for preliminary identification of drought and salt tolerant rice varieties.

  • PDF

Using the kernel milk line for harvesting corn for silage (사일리지용 옥수수의 수확기 결정을 위한 옥수수 낱알의 밀크라인 이용)

  • 신정남;김병호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • We use a variety of methods to determine the optimum time for havesting corn for silage. In addition, adequate dry matter for silage must be considered along with maturity stage. The objective of this study was to evaluate using the kernel milk line to determine when to harvest com for silage in 1992 on the Livestock Experimental F m , Keiymung Junior College at Keongsan, Keongsangbukdo. Four hybrids were field grown and com plants were harvested at various stages of kernel development so that kemel milk line movement could be analyzed whilc the corn was in the premature stages. As the plants approached maturity, the ears were collected from each of the hybrids and the position of the milk line wa5 noted. Then the whole plants were chopped and the content of DM was determined. The milk line was a readily identifiable feature of maturing com kemels. We focused on the five development \tage\. The fint was "soft dough". The second was "dent". The third wa, "75% milk". and the fourth wa5 "half milk". The half milk occurs when the milk line is positioned falf way down the kemel face. and the final stages win "no milk", milk disappearance as indicators of physiological maturity in maix. Milk free stage of the kemel occurred from I to 3 days prior to black layer having developed. The range for harvesting com for silage occurs a kemels mature from 75% milk to no milk. Position of milk line was easy to see. and can be used as a visible indicator to determine com matunty stage\ and whole plant dry matter. Whole plant dry matter increased with advancing maturity. averaged over hybrids it was 24.1, 25.6. 28.5. 34.6 and 39.0% at soft dough, dent, 75% milk. half milk and no milk. Milk line was more usehl indicator in monitoring corn maturity prior to physiological maturity.ing corn maturity prior to physiological maturity.

  • PDF

Comparative Aanalysis of Fatigue on Muscle Activities and Physiological Variables during Ergometer Test (에르고미터 운동 시 근활성도와 생리학적 피로도 비교 분석)

  • Yoon, Chang-Jin;Chae, Woen-Sik;Kang, Nyeon-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.303-310
    • /
    • 2010
  • The purpose of this study was (a)to compare electromyographic (EMG) activities and physiological variables on the development of fatigue induced by ergometer test, (b)to determine investigate the differences in the stage of fatigue between the electromyographic characteristics and physiological variables. Nine male university students who have no musculoskeletal disorder were recruited as the subjects. The electromyographic characteristics(peak IEMG, average IEMG, median frequency, mean edge frequency) and physiological variables(HR, RPE, blood lactate) were determined for each stage(15, 30, 45, 60 minutes, all out). For each dependent variable, one-way analysis of variance(ANOVA) with repeated measures and correlation analysis were performed to test if significant difference existed(p<.05). The results showed that peak IEMG, average IEMG from low extremity and physiological variables were significantly increased during the all-out stage. EMG parameters in VL, VM show significantly correlation with physiological variables during whole stages. This indicated that IEMG values may be proper parameters to determine muscle fatigue rather than physiological variables.

Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves

  • Liang, Shuang;Xu, Xuanwei;Lu, Zhongbin
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • Background: The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng (Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Methods: Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil $C_{18}$ column. Results: Chlorophyll and soluble protein contents were significantly (p = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and $O_2^-$ contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. Conclusion: This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

Effects of Season, Housing and Physiological Stage on Drinking and Other Related Behavior of Dairy Cows (Bos taurus)

  • Lainez, Marielena Moncada;Hsia, Liang Chou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1417-1429
    • /
    • 2004
  • The objective of the paper was to study the drinking and other related behavior of dairy cows (Bos taurus). There were 142 Holstein dairy cows observed and compared in this study. The experiment was designed on the basis of two different housing systems (wet pad with forced ventilation cooling house and open house); two different seasons (winter and summer); four different stages (high milk yielding cows, low milk yielding cows, dry cows, and heifers); and grouping (home and visitor animals). All cows had free access to water. Dairy cows spent 13.8 min/day drinking in wet-pad house and 11.7 min/day in open house. owever, there was no significant difference in the duration of water drinking between these two housing systems (p>0.05). The water consumption was significantly higher in wet-pad housed animals (68 L/day) than open-housed animals (31.5 L/day) (p<0.05). A significant interaction between housing and grouping (p<0.05) was found. Home and visitor animals spent more time drinking in open house, wet-pad house, respectively. A highly significant interaction was found between housing and drinking time during the day (p<0.001). Animals in open house drank more during the morning (6:00 to 10:00 h), whereas wet-pad housed animals drank in the afternoon (14:00 to 15:00 h) and evening (18:00 to 20:00 h). The average time a cow spent in drinking in summer was not ignificantly different from that of drinking in winter. However, the water intake was significantly higher in summer (61.9 L/day) than in winter (38.6 L/day) (p<0.05). Drinking activity showed a highly significant interaction between season and physiological stage (p<0.01). High milk yield cows spent more time drinking in summer than in winter, whereas cows in all other stages followed the opposite drinking pattern. Grouping exchange did not influence the drinking behavior of dairy cows in either season (p>0.05); both home and visitor animals spent almost the same time in drinking water. A strong significant interaction between season and time during the day was found(p<0.01), suggesting that animal's high drinking frequency occurred during the daytime for both seasons, with a peak midday in winter and two peaks at 10:00 h in the morning and 19:00 h in summer. Thus, drinking behavior was associated with the cooler time of day in summer and with the warmer hours of day in winter. High and low milk yielding cows and heifers spent 15.3 min/day, 14.3 min/day, and 12.8 min/day, respectively, in water drinking activity, but there was no significant difference among them (p>0.05). There was, however, a significant difference in water drinking activity found in dry cows, which spent less time in drinking at 8.2 min/day (p<0.05).

Changes of Total Protein during the Metamorphosis of the Indian meal moth, Plodia interpunctella Hubner (화랑곡나방의 변태(變態)에 따른 총단백질(總蛋白質)의 변화(變化))

  • Lee, Sang-Suk;Lee, Kyung-Ro
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.107-113
    • /
    • 1980
  • The concentration of total protein during the metamorphosis of the Indian meal moth, Plodia interpunctella $H\ddot{u}bner$ was measured using micro-Kjeldahl method by Oser(1965). Healthy specimens were chosen as samples at each developmental stages: the 1st instar larva, the 3rd inster larva, final instar larva, pupae 2, 6, 10 days and the adult 1 day. The total protein concentration decreased gradually until the two day pupal stage and increased at the six day pupal stage. In the one day dault stage, the concentration reached a maximum. In conclusion, changes of total protein concentation through the course of the physiological cycle form a U-shaped curve when graphed against the histolysis of larval organs and the histogenesis of adult organs. In view of controlling pest, the U-shaped pattern of physiological activity indicates that control will be the most effective at the time of the most physiological weakness manifested at the two day pupal stage.

  • PDF

Physiological and Spectroscopic Changes of Rice by Nitrogen Fertilization Conditions

  • Jung-Il Cho;Dongwon Kwon;Hoejeong Jeong;Wan-Gyu Sang;Sungyul Chang;Jae-Kyeong Baek
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.106-106
    • /
    • 2022
  • An appropriate amount of nitrogen fertilizer input during rice cultivation is essential for rice growth, quality control, and reduction of greenhouse gases in paddy fields. Therefore, it is necessary to develop a technology that can check whether an appropriate amount of fertilizer is applied in paddy fields. In this study, we tried to derive a method for diagnosing nitrogen fertilization level using spectroscopic diagnosis, physiological analysis, and molecular indicator genes. Nitrogen fertilization treatment was performed in a greenhouse by dividing into five treatment conditions: no fertilization (N0), low fertilization (N0.5), standard fertilization (N1.0), excessive fertilization (N1.5), and double fertilization (N2.0), respectively. Growth characteristics analysis was investigated by nitrogen fertilization conditions and growth stages, and the height of the canopy was analyzed using a laser scanner. Physiological and spectroscopic analyses were performed by analyzing chlorophyll and sugar contents and measuring SPAD and leaf spectrometer on rice leaves. In addition, real-time PCR experiment was performed to check the relative expression levels of several known nitrogen metabolism related genes. These results suggest that spectroscopic techniques can be helpful in diagnosing the level of nitrogen fertilization in rice paddy fields.

  • PDF