• Title, Summary, Keyword: Piezolaminated Plate

Search Result 3, Processing Time 0.02 seconds

Snap-through Phenomena on Nonlinear Thermopeizoelastic Behavior of Piezolaminated Plates (압전적층판의 비선형 열압전탄성 거동에서의 스냅-스루 현상)

  • Oh, Il-Kwon;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.232-237
    • /
    • 2000
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are numerically investigated by applying a cylindrical arc-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von-Karman strain-displacement relationships, nonlinear finite element formulations are derived for thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopiezoelastic behavior and vibration characteristics are studied for symmetric and eccentric structural models with various piezoelectric actuation modes. Present results show the possibility to enhance the performance of thermal structures using piezoelectric actuators and report new phenomena, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection of piezolaminated plates.

  • PDF

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.