• Title/Summary/Keyword: Pin-joint

Search Result 172, Processing Time 0.029 seconds

Fabrication and Experiment of Micromirror with Aluminum Pin-joint (알루미늄 핀-조인트를 사용한 마이크로 미러의 제작과 측정)

  • Ji, Chang-Hyeon;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.487-494
    • /
    • 2000
  • This paper describes the design, fabrication and experiments of surface-micromachined aluminum micromirror array with hidden pin-joints. Instead of the conventional elastic spring components as connection between mirror plate and supporting structure, we used pin-joint composed of pin and staples to support the mirror plate. The placement of pin-joint under the mirror plate makes large active surface area possible. These flexureless micromirrors are driven by electrostatic force. As the mirror plate has discrete deflection angles, the device can be ap;lied to adaptive optics and digitally-operating optical applications. Four-level metal structural layers and semi-cured photoresist sacrificial layers were used in the fabrication process and sacrificial layers were removed by oxygen plasma ashing. Static characteristics of fabricated samples were measured and compared with modeling results.

  • PDF

The Strength of Composite Control Rod Joint under the Pin Loading (핀하중을 받는 복합재 조종봉 체결부의 강도)

  • 박노회;안현수;권진회;최진호;양승운;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.159-162
    • /
    • 2001
  • A combined finite element and experimental study based on the characteristic length method is performed to investigate the strength and behavior of the pin joint in composite control rod. The failure is estimated by the Yamada-Sun and Tsai-Wu criteria on the characteristic curve. The gap elements are used to simulate the contact between the pin and the composite fitting with hole. The accuracy and applicability of the method are validated by the joint tests. All the specimens were failed in the bearing mode in the test and finite element analysis, and good agreement was found between the predicted and test results on the joint strength of composite control rod.

  • PDF

A Study on the strength of the Bolted Joint & Pin Joint with Hole Clearance (원공공차를 가진 볼트 조인트와 핀 조인트의 강도평가에 관한 연구)

  • Jeong, Kang-Woo;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.186-190
    • /
    • 2012
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, composite joint have become a very important research area because they are often the weakest sites in composite structures. In this paper, the failure strengths of the bolted joint and pin joint which have variable hole clearance were evaluated and compared. From the tests, the first failure loads of the bolted joint and pin joint with $880{\mu}m$ hole clearance have decreased by 24.2 % and 51.3 % compared to those of joints with $0{\mu}m$ hole clearance, respectively. Also, the failure index of the joints were calculated by the finite element method and compared with experimental results.

An experiment of optimizing tools for Lap joint with 2tmm Aluminum alloy plate using FSW (2tmm AL-합금재의 겹침이음을 위한 교반용접의 실험적 연구)

  • 장석기;이돈출;김상진;전정일
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.153-160
    • /
    • 2002
  • This paper shows the possibility of performing Lap joint using the friction stir welding and the determination of tool's dimensions for FSW in Milling machine. This research also is reported on obtaining the tensile-shear strength, 9.319 ( kgf/mm$^{2}$) and the energy absorption, 2,682 (kgf-mm) under this experiment. The optimal tool's dimensions and method for Lap joint in 2tmm aluminum alloy plate using FSW is as follows; The diameter of shoulder and pin are 9 $\phi$mm and 3$\phi$mm, the length of pin is 3.6mm. The conditions of shoulder of tool is not pressed into original base metal.

  • PDF

Stress Analysis of MWK Composite Laminate with Multi-pin Loaded Holes (다중 핀 하중을 받는 MWK 복합재료의 응력 해석)

  • 조민규;김병구;전흥재;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.74-78
    • /
    • 2003
  • Stress analysis was conducted with finite element method to study the stress distributions in both single-pin and multi-pin loaded composite laminates. The various parameters involved in the design of the joint method were considered. The stress distributions in the vicinity of the holes were predicted considering the effects of various parameters such as the lay-ups, number of pins, number of rows, row spacing, and hole patterns. The results show that the performance of joint is greatly affected by these parameters.

  • PDF

Creep of Drift Pin Moment Resisting Joint of LVL under Changing RH (상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 접합부의 크리프 변형 거동)

  • 홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 1999
  • The objective of this study was to present creep and the effects of mechano-sorptive deflection of drift pin moment resisting joint between LVL members under changing relative humidity (RH) conditions. The LVL members with steel gusset were jointed by a square pattern of eight injected drift pin. Three diameter drift pins were used to test specimens (6mm, 10mm, and 16mm). The creep test was conducted under two constant loading conditions : one at 30 kgf(840 kgf-cm) and the other at 60 kgf(1680 kgf-cm). The experiment was conducted in an open shed outside. (1)The total rotation creep model of moment resisting joing can be expressed as the sum of the creep of controlled environment (3-parameter model), dimensional change and mechano-sorptive deflection resulting from the variable environment. (2)Mechanosorptive rotation creep is recoverable as moisture content increases during adsorption. Least squares method for linear regression analysis was performed using mechano-sorptive rotation creep as the dependent variable and moisture content as the independent variable. The slope of low moment specimens are compared with those of high moment. This means that low moment condition is more easily affected by changes in humidity than high moment conditions. (3)Although creep deflection is higher for small diameter drift pin than for large diameter drift pin, the shape of creep deflection curves for all specimens is similar.

  • PDF

An Experimental Study on Lap Joint using FSW with $2mm^t$ Aluminum Alloy Plate ($2mm^t$ 알루미늄합금재의 겹치기이음을 위한 마찰교반용접의 실험적 연구)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.728-735
    • /
    • 2003
  • This paper shows the possibility of performing Lap joint using the friction stir welding with $2mm^t$ aluminum alloy plate and the determination of tool-dimensions for FSW in milling machine. This research also is reported on obtaining the tensile-shear strength, 91.3 (MPa) and the energy absorption, 26.3 (J) for Lap jointed specimen. The optimal tool-dimensions and method for Lap joint using FSW is as follows; each diameter of shoulder and pin is $9\phi(mm) and 3\phi(mm)$, the length of pin is 3.6(mm), Pressing the shoulder of tool into original base metal is not reasonable.

Development of a Modified Exoskeletal Linkage Type Instrument for 3-D Motion Measurement of the Human Knee Joint (무릎관절의 3차원 회전량 측정을 위한 개선된 외골격 링크장치 형태의 측정기구 개발)

  • 김영은;안정호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.289-294
    • /
    • 1994
  • A new type of electrogoniometer to measure the three dimensional motion of the human knee joint was developed. This instrument is composed of six potentiometers: four arranged for two universal joints, one for pin joint, and one for axial rotation measurement. The voltage change in six potentiometers were collected through A/D converter for acquisition, storage and analysis. With a developed instrument, gait analysis was performed. Compared to earlier developed triaxial type goniometer, new instrument shows its convenience in application and accuracy in measurement.

  • PDF

Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints (금속 핀으로 보강된 복합재 단일겹침 체결부의 강도 연구)

  • Lee, Byeong-Hee;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Choi, Ik-Hyeon;Chang, Sung-Tae
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • The main objective of this study is to investigate the effect of metal z-pinning on the failure behavior of cocured composite single-lap joints. Three different pin diameters (0.3, 0.5, and 0.7 mm) and three pin areal densities (0.5, 2.0, and 4.0%) were examined. The specimens were fabricated by T700-12K-31E#2510 unidirectional prepreg from Toray. Stainless steel pins were used for z-pinning. Test results showed that except one case with extremely low pin density of 0.5%, all other z-pinned joints exhibited lower initial crack stresses than those of the unpinned joint. However the ultimate strength of the z-pinned joint increased up to 45% at most. Furthermore, even after the complete failure of the joint, the z-pins sustained the carried load to a certain degree experiencing large deformation and provided the stable fracture behavior for the composite joint.

Pull-off Strength of Jagged Pin-reinforced Composite Hat Joints (요철핀으로 보강된 복합재 모자형 체결부 구조의 강도 연구)

  • Kwak, Byeong-Su;Kim, Dong-Gwan;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.323-331
    • /
    • 2018
  • The effect of stainless steel jagged-pin reinforcement on the pull-off strength of the composite hat-joint was studied by the test. The pins were physically and chemically surface-treated and inserted in the thickness direction over the interface where the skin and stiffener meet. The specimens including the jagged-pins were made by co-curing process. Diameters of the jagged-pins were 0.3, 0.5 and 0.7 mm. The pin areal densities were set to 0.5 and 2.0% based on the interface area where the skin and stiffener meet. The specimens using 0.3 mm diameter normal (un-jagged) pins with 2.0% areal density were additionally fabricated and tested to investigate the pin shape effect on the pull-off strength. The pull-off strengths of specimens reinforced with 0.5% areal density by 0.3, 0.5, and 0.7 mm diameter pins were 45, 19 and 9% higher than those of un-reinforced specimens, respectively. In case with 2.0% pin areal density, the strengths were 127, 45, and 11% higher than those of un-reinforced specimens, respectively. The test results show that the higher pin areal density results in the higher strength when the pin diameter is the same. When the pin areal density is the same, the smaller pin diameter leads to higher strength. When the joints using jagged-pins and normal pins in 2.0% areal density with 0.3 mm diameter, the joints of jagged-pins showed the 64% higher strength. From the results of this study, it was confirmed that jagged-pin reinforcement can be an effective method for improving the pull-off strength of composite hat-joint.