• 제목/요약/키워드: Pipe-dynamics

검색결과 173건 처리시간 0.024초

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.

유연관-해저주행차량 연성 동적거동 해석 (Coupled Dynamic Analyses of Underwater Tracked Vehicle and Long Flexible Pipe)

  • 홍섭;김형우
    • 한국해양학회지:바다
    • /
    • 제13권3호
    • /
    • pp.237-245
    • /
    • 2008
  • 우리는 해저 연약지반 주행차량과 주행차량의 상부에 결합되어 있는 유연관의 연성거동 동력학 해석 기법을 개발하였다. 연약지반 주행차량은 1개의 강체로 모델링되었으며, 질량집중매개변수 기법을 이용한 이산화기법을 적용하여 유연관을 모델링하였다. 강체 무한궤도 주행차량의 운동방정식과 유연관의 3차원 비선형 지배방정식을 결합시켰으며, 4개의 오일러 매개변수를 이용하여 주행차량과 유연관의 자세를 표현하였다. 주행차량과 유연관의 비선형 연성거동 동력학 방정식의 해를 구하기 위해, 증분-반복법을 이용하였다. 시간영역 수치적분을 위해 $Newmark-\beta$기법을 이용하였다. 증분-반복법을 적용하여 연성 운동방정식에 대한 자코비안 행렬을 유도하였다. 동적거동 동력학 해석 기법을 통해 유연관의 동적거동과 연약지반 위를 주행하는 무한궤도 차량의 동적거동 사이의 상호작용을 시간영역에서의 관찰하였다.

내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석 (Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid)

  • 박종환;이우식
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계 (Design of the long perforated pipe in water treatment process using CFD)

  • 조영만;유수전;노재순;빈재훈
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.

전산유체역학 배관 곡면 침식 모사를 통한 배관 실패 주기 분석 (Analysis of Pipe Failure Period Using Pipe Elbow Erosion Model by Computational Fluid Dynamics (CFD))

  • 남정용;이용규;박건희;이건학;이원보
    • Korean Chemical Engineering Research
    • /
    • 제56권1호
    • /
    • pp.133-138
    • /
    • 2018
  • 2000년대 이후 대두된 안전, 환경 이슈들로 인해 안전 관리는 더욱 더 중요해졌다. 하지만 안전 관리는 많은 경험적 데이터들을 요구하므로 한계점들이 많다. 안전 분야 중 하나인 배관 안전의 경우 현재 배관을 관리하는 시뮬레이션 프로그램들이 존재하지만, 배관 내부 침식에 대해서는 데이터를 얻기 힘들어 시뮬레이션에 반영이 잘 되어있지 않은 상태이다. 이러한 문제점에서 착안해 본 연구에서는 전산유체역학(CFD)을 이용하여 배관 내부의 곡면에 일어나는 침식을 모사하였고, 계산한 침식 속도를 바탕으로 한계상태함수를 이용하여 배관의 실패 주기를 분석하였다. CFD 대상 배관의 경우 여수 산업 단지에 실제로 운영되고 있는 표본을 사용하였다. DPM (Discrete Phase Model)과 부식 모델을 이용하여 CFD 결과로 $3.093mm{\cdot}yr^{-1}$ 수치의 침식 속도를 얻을 수 있었고, 이 결과를 한계상태함수에 적용한 결과 배관에 누출(leak)을 유발하는데 14.2년, 파열(burst)를 유발하는데 28.2년이라는 실패 주기를 얻어낼 수 있었다. 이러한 과정들을 통해 배관 곡면 침식이 배관 안전 진단에 유효한 실패 모드임을 도출할 수 있었다. 본 연구는 실패 연도를 구할 수 있는 방법론들을 제시하여 데이터의 한계점을 극복하고, 배관 안전 진단에 좀 더 정밀하고 발전된 방법을 제시한 것에 대해 의의를 가진다.

유체가 흐르는 인장 가능한 곡선관의 고유진동수 해석 (Natural Frequency Analysis of an Extensible Curved Pipe Conveying Fluid)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.792-795
    • /
    • 2005
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bemoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived. To investigate the dynamic characteristics of the system the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed. From these results, we should consider the nonlinearity to analyze dynamics of a curved pipe conveying fluid more precisely.

  • PDF

기하학적 비선형성을 고려한 유체를 수송하는 반원관의 면내운동에 대한 진동 해석 (Vibration Analysis for the In-plane Motions of a Semi-Circular Pipe Conveying Fluid Considering the Geometric Nonlinearity)

  • 정진태;정두한
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.2012-2018
    • /
    • 2004
  • The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-$\alpha$ method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

기하학적 비선형성을 갖는 유체를 수송하는 곡선관의 진동 특성 (Vibration Characteristics of a Curved Pipe Conveying Fluid with the Geometric Nonlinearity)

  • 정두한;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.793-798
    • /
    • 2004
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the extended Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. From these results, we should consider the geometric nonlinearity to analyze the dynamics of a curved pipe conveying fluid more precisely.

  • PDF

유체를 수송하는 반원형 곡선관의 면내운동에 대한 비선형 진동 해석 (Non-linear Vibration Analysis for the In-plane Motion of a Semi-circular Pipe Conveying Fluid)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.677-682
    • /
    • 2003
  • The non-linear dynamic characteristics of a semi-circular pipe conveying fluid are investigated when the pipe is clamped at both ends. To consider the geometric non-linearity for the radial and circumferential displacements, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived form the Galerkin method. The natural frequencies varying with the flow velocity are computed fen the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized- method. From these results, we should to describe the non-linear behavior to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

  • PDF

고등어 자동 선별기 개발을 위한 고등어 선별 성능 분석 (Analysis of Mackerel Sorting Performance for Development of Automatic Mackerel Grader)

  • 전철웅;손정현;최명구
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.115-121
    • /
    • 2016
  • A mackerel grader is a machine for sorting mackerel according to size. In this study, the dynamic deflection and optimal sorting simulation of a mackerel grader was carried out by using multi-body dynamics. To analyze the dynamic deflection of the roller, RecurDyn, a multi-body dynamics analysis program, was used. The dynamic deflection of the roller pipe was analyzed according to the inclination of the roller pipe. When the inclination of the roller pipe was 30 degrees, the roller indicated the maximum deflection of about 6.3 mm at the center of the mass. To simulate the mackerel sorting, the mackerel grader machine was modeled, and the contact simulation between the mackerel model and the rotating roller pipe was carried out. When the inclination of the roller frame was 7 degrees, the mackerel grader indicated optimal sorting performance.