• Title/Summary/Keyword: Planar resonators

Search Result 37, Processing Time 0.029 seconds

Analysis and Design of Planar Textile Resonator for Wearable Magnetic Resonance-Wireless Power Transfer (의복용 자기공진형 무선전력전송 시스템을 위한 평면형 직물공진기의 설계 및 연구)

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.119-126
    • /
    • 2016
  • In this paper, we proposed the planar textile resonator for constructing wearable MR-WPT system and analyzed the characteristic of textile substrates used in resonators. The planar textile resonators were designed to resonate at 1-10 MHz. The loop and coil were fabricated planar structure on textile substrate using conductive materials. Polyester fiber and cotton widely used in real life were chosen as textile resonators for wearable applications and copper tape and silver paste were used for fabricating planar loop and coil on textile substrate. For comparison analysis on transfer efficiency according to the types of textile, transmitter and receiver parts were symmetric. According to the result, for the highest transfer efficiency of wearable WPT system, the planar resonators have specifications of relative thick textile substrate with low permittivity and low surface resistance of conductive pattern. The performed experiments show that the planar textile resonator is possible to be used for resonator in wearable MR-WPT system.

The Design of LTCC MLC Bandpass Filters Using λ/4 Hair-pin Resonators (λ/4 Hair-pin 공진기를 이용한 LTCC MLC 대역통과 여파기의 설계)

  • 성규제;여동훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.39-43
    • /
    • 2002
  • In this thesis, a λ/4 hair-pin resonator is proposed to reduce the size of resonators. A LTCC MLC bandpass filter is designed using the λ/4 hair-pin resonators. The electromagnetic coupling structure between two planar resonators is analysed. The equivalent circuit is derived to explain the behavior of the LTCC MLC bandpass filter using λ/4 hair-pin resonators. A design procedure is also described. The simulated and measured results of 2-pole bandpass filter are presented.

  • PDF

The Design of 2.4GHz Band LTCC Bandpass Filter using $\lambda/4$ Hairpin Resonators ($\lambda/4$ Hairpin 공진기를 이용한 2.4GHz 대역 LTCC 대역통과 여파기의 설계)

  • Seong Gyu Je;Choe Jae U;Park Hyeon Sik;Park Jang Hwan;Yeo Dong Hun
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.260-264
    • /
    • 2003
  • In this paper, a $\lambda/4$ hairpin resonator is proposed to reduce the size of planar resonators for a LTCC MLC bandpass filter. The $\lambda/4$ hairpin resonator operates as stepped impedance resonator (SIR) without changing the width of the planar resonator. It is composed of two sections those are parallel coupled line and transmission line. The characteristic impedance of two sections is different each other. The design formulas of the bandpass filter using the coupling element at the arbitrary position are derived from even and odd-mode analysis. The formulas can take account of the arbitrary coupling of lumped ana/or distributed resonators. The advantage of this filter is its abilities to change freely the coupling structure between two resonators. Experimental bandpass filters for 2.4GHz Band are implemented and their performances are shown.

  • PDF

The Design of LTCC MLC Bandpass Filters using λ/4 Hair-pin Resonators (λ/4 Hair-pin 공진기를 이용한 LTCC MLC 대역통과 여파기의 설계)

  • 성규제;여동훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.14-19
    • /
    • 2003
  • In this paper, a λ/4 hair-pin resonator is proposed to reduce the size of resonators. A LTCC MLC bandpass filter is designed using the λ/4 hair-pin resonators. The electromagnetic coupling structure between two planar resonators is analysed. The equivalent circuit is derived to explain the behavior of the LTCC MLC bandpass filter using λ/4 hair-pin resonators. A design procedure is also described. The simulated and measured results of 1.8 GHz band 2-pole bandpass filter are presented.

Semi-lumped Balun Transformer using Coupled LC Resonators

  • Park, Jongcheol;Yoon, Minkyu;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1154-1161
    • /
    • 2015
  • This paper presents a semi-lumped balun transformer using conventional PCB process and its design theory and geometry for the maximally flat response and wide bandwidth using magnetically coupled LC resonators. The proposed balun is comprised of two pairs of coupled resonators which share one among three LC resonators. It provides an identical magnitude and phase difference of 180° between two balanced ports with DC isolation and an impedance transformation characteristic. Theoretical design and analysis were performed to optimize the inductance and capacitance values of proposed balun device for obtaining the wide bandwidth and maximally flat response in its pass-band. Three balun transformers with a center frequency of 500 MHz were demonstrated for proving the concept of design proposed. They were fabricated by using lumped chip capacitors and planar inductors embedded into a conventional 4-layered PCB substrate. They exhibited a maximum magnitude difference of 0.8 dB and phase difference within 2.4 degrees.

The Design of 2.4 GHz Band LTCC Bandpass Filter using $\lambda$/4 Hairpin Resonators ($\lambda$/4 Hairpin 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 필터의 설계)

  • Sung Gyu-Je
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.7-11
    • /
    • 2004
  • In this paper, a $\lambda$/4 hairpin resonator is applied to reduce the size of planar resonators for a 2.4 GHz Band LTCC MLC bandpass filter. The $\lambda$/4 hairpin resonator operates as stepped impedance resonator (SIR) without changing the width of the planar resonator. It is composed of two sections those are parallel coupled line and transmission line. The characteristic impedance of two sections is different each other. The design formulas of the bandpass filter using the coupling element at the arbitrary position are derived from even and odd-mode analysis. The formulas can take account of the arbitrary coupling of lumped and/or distributed resonators. The advantage of this filter is its abilities to change freely the coupling structure between two resonators. Experimental bandpass filters for 2.4 GHz Band are implemented and their performances are shown.

  • PDF

Design and Simulation of the laminated planar chip ceramic bandpass filter for 1.9GHz (1-9GHz대의 적층 칩 세라믹 대역 통과 필터 설계 및 시뮬레이션)

  • 김지균;이헌용;윤중락;김민석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.339-342
    • /
    • 1998
  • A high performance, high-dielectric stripline filter has been developed. The filter consists of planar resonators and its structure is made of high permittivity multilayer ceramic. The performance is distinctive with its attenuation pole. An equivalent lumped circuit is derived to explain the behavior of the attenuation pole quantitatively. A precise design procedure is also described.

  • PDF

Miniaturized Bandpass Filter with Improved Stopband Characteristics using planar multilayer structure (평면의 적층구조를 이용한 저지대역 특성을 향상시킨 소형화된 대역통과 필터)

  • Choi, Oh-Seog;Nam, Hun;Lim, Yeong-Seog
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.278-282
    • /
    • 2003
  • The rapid growth of wireless and mobile communications has stimulated the development of multilayer filter technology. In this paper, one type of aperture-coupled microstrip interdigital-loop resonators in a multilayer structure are proposed and investigated for the applications to the design of a new class of compact microstrip bandpass filter. The new filter configuration consists of two arrays of microstrip interdigital-loop resonators that can be coupled through the apertures on the common ground plane. Depending on the arrangement of the apertures, different filtering characteristics can easily be realized. The results of measurement are almost similar to those of simulation.

  • PDF

A Low-Loss Patch LTCC 60 GHz BPF Using Double Patch Resonators

  • Lee, Young Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.570-572
    • /
    • 2012
  • In this paper, a three-dimensional (3-D) low-loss and wide-band BPF based on low-temperature co-fired ceramic (LTCC) has been presented for mm-wave wireless communication applications. The proposed BPF is designed in a 6-layer LTCC substrate. The double patch resonators are fully integrated into the LTCC dielectrics and vertical via and planar CPW transitions are designed for interconnection between embedded resonators and in/output ports and MMICs, respectively. The designed BPF was fabricated in a 6-layer LTCC dielectric. The fabricated BPF shows a centre frequency (fc) of 53.23 GHz and a 3dB bandwidth of 14.01 % from 49.5 to 56.9 GHz (7.46 GHz). An insertion loss of -1.56 dB at fc and return losses below -10 dB are achieved. Its whole size is $4.7{\times}1.7{\times}0.684mm^3$.

  • PDF

Characteristic Analysis corresponding to cutting edge of Strip Line (스트립 선로의 절단각에 따른 특성 해석)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.58-59
    • /
    • 2011
  • Microstrip line on dielectric substrate depending on the type of its configuration can be applied to be antenna, communication filters, and resonators. When driving frequency is considered more than X-band, unnecessary signal leakage should be occurred because of flowing through the planar circuit at banding position. So leakage signal will affect other planar circuit, and then EMC problem has to be introduced. In this paper, the affection of banding planar circuit on dielectric substrate was investigated.

  • PDF