• Title/Summary/Keyword: Plasma boronizing

Search Result 6, Processing Time 0.023 seconds

A Study On the Sand Wear Resistance and Formation Behavior of Boride Layer Formed on Ni-Cr-Mo Steel by Plasma Paste Boronizing Treatment (Plasma Paste Boronizing법에 의한 Ni-Cr-Mo강의 붕화물층 생성거동과 내 토사마모특성에 관한 특성)

  • Cho J. H;Park H. K;Son K. S;Yoon J. H;Kim H. S;Kim C. G
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The surface property and formation behavior of a boride layer formed on Ni-Cr-Mo steel in a plasma paste boronizing treatment were investigated. The plasma paste boronizing treatment was carried out at 973~1273 K for 1-7 hrs under the gas ratio of Ar:H$_2$ (2:1). The thickness of the boride layer increased with increasing temperature and time in the boronizing treatment. The cross-section of the boride layer was a tooth structure and the hardness was Hv 2000~2500. XRD analysis revealed that the compound was identified as FeB, $Fe_2$B, and mixed phase of FeB/$Fe_2$B in the boride layer formed at 973~1073 K, 1173K, and 1273K, respectively. The Ni-Cr-Mo alloy boronized at 1173-1273 K showed the best excellent wear resistance against the sand. As a results of corrosion test in 1 M $H_2$$SO_4$ solution, $Fe_2$B formed on the matrix alloy exhibited higher corrosion resistance than FeB.

Characteristics of Two-Step Plasma-Assisted Boronizing Process in an Atmosphere of BCl3-H2-Ar (BCl3-H2-Ar 분위기를 이용한 2단계 플라즈마 보로나이징 특성)

  • Nam, Kee-Seok;Lee, Gu-Hyun;Shin, Pyung-Woo;Song, Yo-Seung;Kim, Bae-Yeon;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.358-361
    • /
    • 2006
  • A two-step plasma-assisted boronizing process was carried out on the AISI 1045 steel substrate to reduce the pore density introduced by a conventional single plasma boronizing process. The specimens were plasma boronized for 1 h at $650^{\circ}C$ and subsequently far 7 h at $800^{\circ}C$ in an atmosphere of $BCl_3-H_2-Ar$. The boride layer thickness was parabolic in boronizing time, a high HV reading of 1540 was found up to the boride layer thickness of $25{\mu}m$. It was found that the morphology of the boride layer prepared by the two-step boronizing process was changed from a columnar to a tooth-like structure and the pores in the borided steel were eliminated completely in comparison to those synthesized by the conventional single boronizing process, implying that it is highly applicable for enhancing the dense and compact coating properties of the low-alloy steel.

Surface Treatment of Steel by Plasma Boronizing

  • Lee, G.H.;Na, K.S.m;Kwon, S.C.;Kim, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.49-57
    • /
    • 1995
  • At present the processes of boronizing have been mostly studied in a plasma from gaseous compounds containing the impregnating element and are in an industrial use. These have been investigated by a variety of works in a glow discharge with different mixture ratios of $B_2H_6$ and $H_2$ as well as $BCl_3$ and $H_2$. The active atomosphere has been diluted by Ar or some other inert gas in order to enhance control of boron potential and to reduce the ignition voltage of the glow discharge. The Control of gaseous atomosphere is essential to a boride layer in plamsa boronizing treatment. The boride formation is required to make the workpiece surface saturated with boron content. The present study considers the efficiency of plasma boronizing reactions and the morphology of boride layer under various plasma conditions

  • PDF