• Title/Summary/Keyword: Plasma damage-free

Search Result 60, Processing Time 0.032 seconds

Development of Plasma Damage Free Sputtering Process for ITO Anode Formation Inverted Structure OLED

  • Lee, You-Jong;Jang, Jin-N.;Yang, Ie-Hong;Kim, Joo-Hyung;Kwon, Soon-Nam;Hong, Mun-Pyo;Kim, Dae-C.;Oh, Koung-S.;Yoo, Suk-Jae;Lee, Bon-J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1323-1324
    • /
    • 2008
  • We developed the Hyper-thermal Neutral Beam (HNB) sputtering process as a plasma damage free process for ITO top anode deposition on inverted Top emission OLED (ITOLED). For examining the effect of the HNB sputtering system, Inverted Bottom emission OLEDs (IBOLED) with ITO top anode electrode were fabricated; the characteristics of IBOLED using HNB sputtering process shows significant suppression of plasma induced damage.

  • PDF

Box Cathode Sputtering Technologies for Organic-based Optoelectronics (유기물 광전소자 제작을 위한 박스 캐소드 스퍼터 기술)

  • Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • We report on plasma damage free-sputtering technologies for organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays by using a box cathode sputtering (BCS) method. Specially designed BCS system has two facing targets generating high magnetic fields ideally entering and leaving the targets, perpendicularly. This target geometry allows the formation of high-density plasma between targets and enables us to realize plasma damage free sputtering on organic layer without protection layer against plasma. The OLED with Al cathode prepared by BCS shows electrical and optical characteristics comparable to OLED with thermally evaporated Mg-Ag cathode. It was found that OLED with Al cathode layer prepared by BCS has much lower leakage current density ($1{\times}10^{-5}\;mA/cm^2$ at -6 V) than that $(1{\times}10^{-2}{\sim}-10^0\;mA/cm^2)$ of OLED prepared by conventional DC sputtering system. This indicates that BCS technique is a promising electrode deposition method for substituting conventional thermal evaporation and DC/RF sputtering in fabrication process of organic based optoelectronics.

Box Cathode Sputtering Technologies for Organic Optoelectronics (유기물 광전소자 제작을 위한 박스 캐소드 스퍼터 기술)

  • Kim, Han-Ki;Lee, Kyu-Sung;Kim, Kwang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.53-54
    • /
    • 2005
  • We report on plasma damage free-sputtering technologies for organic light emitting diodes (OLEDs), organic thin rim transistor (OTFT) and flexible displays by using a box cathode sputtering (BCS) method. Specially designed BCS system has two facing targets generating high magnetic fields ideally entering and leaving the targets, perpendicularly. This target geometry allows the formation of high-density plasma between targets and enables us to realize plasma damage free sputtering on organic layer without protection layer against plasma. The OLED with top cathode prepared by BCS shows electrical and optical characteristics comparable to OLED with thermally evaporated Mg-Ag cathode. It was found that TOLED with ITO or IZO top cathode layer prepared by BCS has much lower leakage current density ($1\times10^{-5}$ mA/cm2 at -6V) than that ($1\times10^{-1}\sim10^{\circ}mA/cm^2$)of OLED prepared by conventional DC sputtering system. This indicates that BCS technique is a promising electrode deposition method for substituting conventional thermal evaporation and dc/rf sputtering in fabrication process of organic based optoelectronics.

  • PDF

Formation of Plasma Damage-Free ITO Thin Flims on the InGaN/GaN based LEDs by Using Advanced Sputtering

  • Park, Min Joo;Son, Kwang Jeong;Kwak, Joon Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.312-312
    • /
    • 2013
  • GaN based light emitting diodes (LEDs) are important devices that are being used extensively in our daily life. For example, these devices are used in traffic light lamps, outdoor full-color displays and backlight of liquid crystal display panels. To realize high-brightness GaN based LEDs for solid-state lighting applications, the development of p-type ohmic electrodes that have low contact resistivity, high optical transmittance and high refractive index is essential. To this effect, indiumtin oxide (ITO) have been investigated for LEDs. Among the transparent electrodes for LEDs, ITO has been one of the promising electrodes on p-GaN layers owing to its excellent properties in optical, electrical conductivity, substrate adhesion, hardness, and chemical inertness. Sputtering and e-beam evaporation techniques are the most commonly used deposition methods. Commonly, ITO films on p-GaN by sputtering have better transmittance and resistivity than ITO films on p-GaN by e-bam evaporation. However, ITO films on p-GaN by sputtering have higher specific contact resistance, it has been demonstrated that this is due to possible plasma damage on the p-GaN in the sputtering process. In this paper, we have investigated the advanced sputtering using plasma damage-free p-electrode. Prepared the ITO films on the GaN based LEDs by e-beam evaporation, normal sputtering and advanced sputtering. The ITO films on GaN based LEDs by sputtering showed better transmittance and sheets resistance than ITO films on the GaN based LEDs by e-beam evaporation. Finally, fabricated of GaN based LEDs by using advanced sputtering. And compared the electrical properties (measurement by using C-TLM) and structural properties (HR-TEM and FE-SEM) of ITO films on GaN based LEDs produced by e-beam evaporation, normal sputtering and advanced sputtering. As a result, It is expected to form plasma damage free-electrode, and better light output power and break down voltage than LEDs by e-beam evaporation and normal sputter.

  • PDF

Plasma Charge Damage on Wafer Edge Transistor in Dry Etch Process (Dry Etch 공정에 의한 Wafer Edge Plasma Damage 개선 연구)

  • Han, Won-Man;Kim, Jae-Pil;Ru, Tae-Kwan;Kim, Chung-Howan;Bae, Kyong-Sung;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.109-110
    • /
    • 2007
  • Plasma etching process에서 magnetic field 영향에 관한 연구이다. High level dry etch process를 위해서는 high density plasma(HDP)가 요구된다. HDP를 위해서 MERIE(Magnetical enhancement reactive ion etcher) type의 설비가 사용되며 process chamber side에 4개의 magnetic coil을 사용한다. 이런 magnetic factor가 특히 wafer edge부문에 plasma charging에 의한 damage를 유발시키고 이로 인해 device Vth(Threshold voltage)가 shift 되면서 제품의 program 동작 문제의 원인이 되는 것을 발견하였다. 이번 연구에서 magnetic field와 관련된 plasma charge damage를 확인하고 damage free한 공정조건을 확보하게 되었다.

  • PDF

The Associations between Plasma Concentrations of Total Radical-Trapping Antioxidant Potential(TRAP), Antioxidant Vitamins and DNA Damage in Human Lymphocytes (혈장 총 율기 포집 능력(TRAP) 수준 및 항산화 비타민 영양상태와 인체 임파구 DNA 손상정도와의 상호관련성 연구)

  • 강명희
    • Journal of Nutrition and Health
    • /
    • v.34 no.4
    • /
    • pp.401-408
    • /
    • 2001
  • The spontaneous frequency of genetic damage and the possible relationship of this damage to total radical-trapping antioxidant potential(TRAP) and antioxidant vitamins, including plasma levels of $\alpha$-carotene, $\beta$-carotene, cryptoxanthin, retinol, $\alpha$-tocopherol and ${\gamma}$-tocopherol in humans were investigated in 57 subjects using two indices of genetic damage, SCE & HFC frequency. The mean of SCE and HFC frequencies were weakly correlated with plasma TRAP(r=-0.305, p<0.1 for SCEs: r=-0.297, p<0.1 for HFCs, respectively), but those were strongly negatively correlated with plasma $\beta$-carotence(r=-0.385, p<0.01 for SCEs : r=-0.392, p<0.01 for HFCs) and cryptoxanthin(r=-0.312, p<0.05 for SCEs : r=0.335, p<0.05 for HFCs, respectively) levels in the subjects. However, those DNA damage markers including SCE and HFC did not correlate with either plasma $\alpha$-carotene, $\alpha$-tocopherol or retinol concentrations. The mean of SCE and HFC frequencies were positively correlated with plasma ${\gamma}$-tocopherol level(r=0.421, p<0.01 for SCEs : r=0.399, p<0.01 for HFCs, respectively). These findings indicate that increased cytogenetic DNA changes, as determined by SCE and HFC frequencies are possibly associated with generation of free radicals in lymphocytes and decreased plasma antioxidant vitamin($\beta$-carotene and cryptoxanthin) status in the subjects. (Korean J Nutrition 34(4) : 401~08, 2001)

  • PDF

The Effects of Purple Grape Juice Supplementation on Blood Pressure, Plasma Lipid Profile and Free Radical Levels in Korean Smokers (포도주스의 보충섭취가 흡연성인의 혈압, 혈장지질 및 자유 라디칼 생성에 미치는 영향)

  • 김정신;김혜영;박유경;박은주;강명희
    • Journal of Nutrition and Health
    • /
    • v.37 no.6
    • /
    • pp.455-463
    • /
    • 2004
  • Flavonoids contained in grapes are potent antioxidants that may protect against oxidative stress and reduce the risk of chronic diseases related with free radical damage. In this study we investigated the effect of daily grape juice supplementation on blood pressure (BP), plasma lipid profiles and the generation of free radicals in 67 healthy volunteers (29 smoker, 38 nonsmokers). The daily 480 ml of grape juice supplementation for 8 weeks resulted in a significant decrease in diastolic BP by 6.5% in smokers and systolic and diastolic BP by 11.2 and 3.7% in non-smokers. Plasma total cholesterol, HDL- and LDL-cholesterollevels in smokers and total cholesterol in non-smokers were significantly increased after the intervention. Plasma triglycerides and conjugated dienes were not affected by grape juice supplementation. Levels of free radical determined by reading the lucigenin-perborate ROS generating sources, decreased significantly by 18% compared to the beginning of the study. The results indicated that the consumption of grape juice may reduce BP and free radical generation in smokers, which was possibly exerted by flavonoids. Our findings suggested that the grape juice has protective effect on chronic disease due to the overproduction of free radical in smokers.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Development of High Performance Indium Tin Oxide Films at Room Temperature by Plasma-Damage Free Neutral Beam Sputtering System

  • Jang, Jin-Nyoung;Oh, Kyoung-Suk;Yoo, Suk-Jae;Kim, Dae-Chul;Lee, Bon-Ju;Yang, Ie-Hong;Moon, Ji-Sun;Kim, Jong-Sik;Choi, Soung-Woong;Park, Young-Chun;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1715-1718
    • /
    • 2007
  • New ITO thin film of good performance has been developed by brand-new, plasma-damage-free sputtering process at the room temperature. The room temperature-processed ITO films with optimized conditions as neutral beam acceleration bias of -30V and In & Sn composition ratio of 99:01 gives lower resistivity as $4.22{\times}10^{-4}{\Omega}-cm$ and higher transmittance over 90% a wavelength of 550 nm. The transmission electron microscope (TEM) images of the films show a nano-crystalline structure.

  • PDF

Damage-Free Treatment of ITO Films using Nitrogen-Oxygen (N2-O2) Molecular DC Plasma

  • Kim, Hong Tak;Nguyen, Thao Phoung Ngoc;Park, Chinho
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.112-115
    • /
    • 2015
  • In this study, the surface of ITO films was modified using $N_2-O_2$ molecular plasma, and the effects of oxygen concentration in the plasma on the ITO surface properties were investigated. Upon plasma treatment of ITO films, the surface roughness of ITO films seldom changed up to the oxygen concentration in the range of 0% to 40%, while the roughness of the films slightly changed at or above the oxygen concentration of 60%. The contact angle of water droplet on ITO films dramatically changed with varying oxygen concentration in the plasma, and the minimum value was found to be at the oxygen concentration of 20%. The plasma resistance at this condition exhibited a maximum value, and the change of resistance showed an inverse relationship compared to that of contact angle. From these results, it was conjectured that the chemical reactions in the sheath of the molecular plasma dominated more than the physical actions due to energetic ion bombardment, and also the plasma resistance could be used as an indirect indicator to qualitatively diagnosis the state of plasma during the plasma treatment.