• Title/Summary/Keyword: Plasma torch

Search Result 135, Processing Time 0.116 seconds

Design of Plasma Cutting Torch by Tolerance Propagation Analysis (공차누적해석을 이용한 플라즈마 절단토치의 설계에 관한 연구)

  • 방용우;장희석;장희석;양진승
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2000
  • Due to the inherent dimensional uncertainty, the tolerances accumulate in the assembly of plasma cutting torch. Tolerance accumulation has serious effect on the performance of the plasma torch. This study proposes a statistical tolerance propagation model, which is based on matrix transform. This model can predict the final tolerance distributions of the completed plasma torch assembly with the prescribed statistical tolerance distribution of each part to be assembled. Verification of the proposed model was performed by making use of Monte Carlo simulation. Monte Carlo simulation generates a large number of discrete plasma torch assembly instances and randomly selects a point within the tolerance region with the prescribed statistical distribution. Monte Carlo simulation results show good agreement with that of the proposed model. This results are promising in that we can predict the final tolerance distributions in advance before assembly process of plasma torch thus provide great benefit at the assembly design stage of plasma torch.

  • PDF

Electrodelss Plasma Torch Powered by Microwave and Its Applications (무전극 마이크로웨이브 플라즈마 토치와 응용)

  • Hong, Yong-Cheol;Jun, Hyung-Won;Lho, Tai-Hyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.889-892
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Lastly, we briefly report an underway research, which is remediation of soils contaminated with oils, volatile organic compounds, heavy metals, etc.

  • PDF

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

Development of Steam Plasma-Enhanced Coal Gasifier and Future Plan for Poly-Generation

  • Hong, Yong-Cheol;Lho, Taihyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.139-144
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Finally, we briefly report treatment of soils contaminated with oils, volatile organic compounds, heavy metals, etc., which is an underway research in our group.

Optimal Design of Atmospheric Plasma Torch with Various Swirl Strengths (스월 강도에 의한 상압 플라즈마 토치의 최적 설계)

  • Moon, J.H.;Kim, Youn-J.;Han, J.G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1736-1741
    • /
    • 2003
  • The characteristics plasma flow of an atmospheric plasma torch used for thermal plasma processing is studied. In general, it is produced by the arc-gas interactions between a cathode tip and an anode nozzle. The performance of non-transferred plasma torch is significantly dependent on jet flow characteristics out of the nozzle. In this work, the distribution of gas flow that goes out to the atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric plasma torch. Numerical analysis is carried out with various angles of an inlet flow which can create different swirl flow fields. Moreover, the size of plasma plume is experimentally depicted.

  • PDF

A Study on the Operating Characteristics of Commercial Frequency Plasma Jet Torch (상용 주파수 (60Hz) Plasma Jet Torch의 동작특성에 관한 연구)

  • 전춘생;정재웅
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1975
  • In order to develop the commercial frequency (60Hz) plasma torch of small capacity for material cutting, welding and other industrial heating, the A.C plasma jet generator of non-transfered type is made domestically and the electrode configurations of plasma torch are composed of two kinds of electrodes W-C and W-Cu, combined by thermal emission and field emission electrode materials. In this paper, the characteristics of input power, thermal efficiency, electrode consumption, the flame and forms of arc voltage and arc current for A.C plasma torch are investigated in relation to such variables as arc current, argon flow and magnetic field intensity to obtain the basic design data necessary to A.C plasma jet generator. The result are as follows; (1)The input power, thermal efficiency and electrode consumption are influenced greatly by argon flow, magnetic field intensity and nozzle materials. (2)A.C arc voltage and current are non-symmetrial, involving D.C Component. Due to this current of D.C Component, transformer core is saturated and a large abnormal current flows into the primary winding coil. In order to prevent this abnormal current flow, a condenser must be connected in series to the main discharge circuit. (3)The stability and sharpness of jet flame are improved more in the torch of W-C electrode configuration than in the torch of W-Cu electrode configuration.

  • PDF

A Study on the Properties of the Dual-mode Plasma Torch System for Melting the Non-conductive Waste (비전도성 폐기물 용융처리를 위한 혼합형 플라즈마토치 시스템 특성 연구)

  • Moon, Young-Pyo;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The preliminary test for the dual mode plasma torch system was carried out to explore the operation properties in advance. The dual mode plasma torch system that is able to operate in transferred, non-transferred, or dual mode is very adequate for melting the mixed wastes including nonconductive materials such as concrete, asbestos, etc. since it exploits both the high efficiency of heat transfer to the melt in transferred mode and stable operation in non-transferred mode. Also, system operation including restarting is reliable and very easy. A stationary melter with a refractory structure was designed and manufactured considering the melting behavior of slags to minimize the refractory erosion. The power supply for the dual mode plasma torch system built with high power insulated gate bipolar transistor (IGBT) modules has functions for both current control and voltage control and is sufficient to suppress the harmonics during the operation of the plasma torch. The power supply provides two different voltages for transferred operation and non-transferred. It is confirmed that the operation voltage in transferred is always higher than non-transferred. The dual mode plasma torch system was successfully developed and is under operation for a melting experiment to optimize operation data.

Preliminary Results on Plasma Counterflow Jets for Drag Reduction of a High Speed Vehicle (초고속 비행체 항력 감소를 위한 플라즈마 분사장치에 대한 예비 결과)

  • Kang, Seungwon;Choi, Jongin;Lee, Jaecheong;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.101-112
    • /
    • 2016
  • The characteristic analysis and fundamental test of a plasma generator is performed for drag reduction of a high speed vehicle. In high pressures, thermal plasmas is suitable for generating plasmas. The appropriate plasma torch is selected and used to generate thermal plasmas. The plasma torch, which can emit high-speed and high-pressure plasma jet, is suitable for generating plasma counterflow jet. In this study, the fundamental test and analysis for the plasma torch is summarized. Results show that supplying gas pressures and electrode gap of plasma torch are considered as critical parameters for generating plasma jets.

A Study on the Measurement of Vibrational and Rotational Temperature Using the Atmospheric Ar Plasma Torch (대기압 아르곤 플라즈마 토치의 진동 및 회전온도 측정 연구)

  • Choi, Kwang-Ju;Jang, Mun-Gug;Han, Sang-Bo;Park, Jae-Youn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1895-1902
    • /
    • 2011
  • This work was carried out for the measurement of vibration and rotation temperature using the optical emission spectroscopy of nitrogen second positive system in the small plasma torch. Among emissions $N_2$ SP systems, the emission of $N_2$ SP(0-0) was so strong. Emission peaks of SP system increased until the position of 12.5[mm] from the end of plasma torch, after that it decreased. However, vibration temperature decreased from 1540[K] to 1000[K] at the position of 12.5[mm]. In addition, rotational temperature was about 400[K] at the position of 10[mm] and it increased a little as much of 420[K] at 12.5[mm]. Consequently, the plasma torch discussed in this work is possible to apply in the surface treatment process under the low temperature.

A Study on Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torch

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.242-243
    • /
    • 2010
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torch. Series resonant half-bridge topology is presented to be a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. The plasma torch rated for 3MW, 2kA and having the physical size of 1m long is selected to be a high enthalpy source in waste disposal system. The steady-state and transient operations of plasma torch are simulated. The parameters of Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. Circuit simulation waveform shows that the ripple of arc current can be maintained within ${\pm}10%$ of its rated value under the existence of load disturbance. This power conversion configuration provides high enough ignition voltage around 5KA during ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

  • PDF