• Title/Summary/Keyword: Plastic Optical Fiber

Search Result 135, Processing Time 0.029 seconds

A Suggestion of Guideline for designing of logo type for Apparel products based on the technology of flexible plastic optical fiber (유연 광섬유 기술을 적용한 의류 제품용 로고 디자인 방향의 제시)

  • Kim, Nam-Hee;Yang, Jin-Hee;Hong, Soon-Kyo;Hong, Suk-Il;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.469-476
    • /
    • 2012
  • The purpose of this study is to derive design guideline for logo design development of smart clothing using flexible plastic optical fiber. In a criterion of guideline derivation for logo design, the first, it is a question of whether it indicates an appropriate degree of brightness across the front of flexible plastic optical fiber. The second, it is a question of whether it indicates relatively an uniform brightness characteristic across the front of flexible plastic optical fiber. For this, the brightness characteristic of flexible plastic optical fiber according to the angle changes and the length of flexible plastic optical fiber was analyzed by the 'Experiment 1'. To deduce guideline for the logo design of the actual garment, the brightness characteristic of flexible plastic optical fiber about the main morpheme of the capital letter of alphabet was analyzed by the 'Experiment 2'. Based on the results of the two experiment, this study derived design guideline and limitations for logo design of smart clothing visualized by the flexible plastic optical fiber.

  • PDF

Side-Coupled Asymmetric Plastic Optical Fiber Coupler for Optical Sensor Systems

  • Kim, Kwang-Taek;Kim, Deok-Gi;Hyun, Woong-Keun;Hong, Ki-Bum;Im, Kie-Gon;Baik, Se-Jong;Kim, Dae-Kyong;Choi, Hyun-Yong
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.255-261
    • /
    • 2008
  • This paper reports a side-coupled asymmetric $1{\times}2$ plastic optical fiber coupler for an optical sensor system. The dependence of the optical power coupling ratio on the coupling angle and refractive index of the adhesion layer in both the forward and backward directions was examined based on the geometrical optics. It was confirmed experimentally that the coupling ratios can be optimized by controlling the coupling angle and refractive index of the adhesion layer. A maximum forward coupling efficiency > 93% was achieved.

Plastic Optical Fiber Sensor for an Anti-Drowsy Driving (운전자 졸음 방지용 플라스틱 광섬유 센서)

  • Eom, Won-Dae;Yeo, Sang-Du;Park, Jae-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.133-139
    • /
    • 2008
  • In this paper, the feasibility for producing a plastic optical fiber sensor to be used as an anti-drowsy driving sensor is discussed. This sensor consists of a plastic optical fiber wound on the steering wheel covered by soft material. When a driver hold a steering wheel, the gripping force is induced and causes to the bend of the plastic optical fiber which decreases the power of light propagated inside the plastic fiber. The experimental results show that the detected optical power decrease as the gripping force increase and that this sensor can be used as the anti-drowsy driving sensor.

  • PDF

Development of an Organic Scintillator Sensor for Radiation Dosimetry using Transparent Epoxy Resin and Optical Fiber (투명 에폭시와 광섬유를 이용한 방사선량 측정용 유기섬광체 센서 개발)

  • Park, Chan-Hee;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Remote detecting system for a radiation contamination using a plastic scintillator and an optical fiber was developed. Using a commercially available silica optical fiber and a plastic scintillator, we tested then for a real possibility as a remote monitoring detector. Also, a plastic scintillator was developed by itself, and evaluated as a radiation sensor. The plastic scintillator was made of epoxy resin, a hardener and an organic scintillation material. The mixture rate of the epoxy resin, hardener and organic scintillator was fixed by using their emission spectrum, transmittance, intensity etc. In this study, in order to decrease the light loss of an incomplete connection between an optical fiber and a scintillator, the optical fiber was inserted into the scintillator during the fabrication process. The senor used a plastic optical fiber and was estimated for its detection efficiency by an optic fiber's geometric factor.

  • PDF

Development and Performance Property Investigation of Lighting System using Plastic Optical Fiber (플라스틱 광섬유를 이용한 조명시스템 개발과 특성 분석)

  • Shin, Sang-Uk;Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.25-32
    • /
    • 2010
  • Compared to general lighting method, the lighting system that uses optic fiber can provide only the visible light of good quality to subject by eliminating ultraviolet ray and infrared ray. Thanks to this merit, it is possible to prevent the hard phenomenon of subject caused by ultraviolet ray and infrared ray and to provide the agreeable light environment. This study developed indoors illumination system of high color rendering on the basis of plastic optic fiber with excellent optical property and processing to substitute halogen lamp which has been used for excellent color rendering in spite of low efficiency and short life. Producing pilot product of the designed illumination system and evaluating the property of electric and optical property, ultraviolet ray radiation quantity and temperature property, this study verified the excellence of suggested lighting system of plastic optic fiber.

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

SNR Improvement in A Wireless Optical Differential Detector Using Plastic Fibers (플라스틱 광섬유를 이용한 무선광 차동검출기의 신호대잡음비 개선)

  • Lee Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.410-417
    • /
    • 2005
  • In this paper, optical noise is reduced by a differential detector with a plastic optical fiber bundle in a wireless optical interconnection. A plastic optical fiber bundle divides the received optical signal equally and connects it to two photodiodes. In this configuration two photodiodes effectively detect the optical signal at one point, and the output voltage variation due to the abrupt change of optical noise distribution in space disappears. The signal to noise ratio in a differential detector with a fiber bundle was improved to be $10\;\cal{dB}$ higher than in a single photodiode with an optical filter.

In Line Plastic-Optical-Fiber Temperature Sensor

  • Seo, Hyejin;Shin, Jong-Dug;Park, Jaehee
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.238-242
    • /
    • 2021
  • In this paper, we present an in line plastic-optical-fiber (POF) temperature sensor based on intensity modulation. The in line POF temperature sensor is composed of a POF, including an in-fiber micro hole filled with reversible thermochromic material, the transmittance of which depends on temperature. The reversible thermochromic material was cobalt chloride/polyvinyl butyral gel. A cobalt chloride solution of concentration 30.8 mM was formulated using 10% water/90% ethanol (v/v) solution, and gelled by dissolving polyvinyl butyral in this solution. Four types of in line POF sensors, with in line micro holes of four different diameters, were fabricated to measure temperature in the range of 25 to 75 ℃. The output optical power of all of these in line POF temperature sensors was inversely proportional to the temperature; the relation between output power and temperature was approximately linear, and the sensitivity was proportional to the diameter of the in-fiber micro hole. The experimental results indicate that an in line POF sensor can be used effectively for measuring moderate temperatures.

Fabrication and Characterization 1×7 Plastic Optical Fiber Coupler Using Tapered Acrylic Cylinder (가늘어진 아크릴 원통을 이용한 1×7 커플러 제작 및 특성 측정)

  • Min, Seong-Hwan;Kim, Kwang-Taek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • In this paper, we proposed and demonstrated $1{\times}7$ type plastic optical fiber(POF) coupler incorporating a tapered acrylic cylinder which works optical combining and dividing region. A fabricated POF coupler showd 2.27~3.31 dB of insertion loss for optical combining and 8.67~11.27dB of insertion loss for optical spitting.

Sensor Mat using POF for Medical Application (의료용 플라스틱광섬유 센서 매트)

  • Choi, Kyoo-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.363-365
    • /
    • 2007
  • Novel concept of sensor mat and its signal processing method is proposed for patient monitoring in medical application. Proposed sensor mat structure has sensing inner layer which has cross-linked arrangement using plastic optical fiber(POF). Large core diameter of plastic optical fiber behaved as band pass filter by averaging the noise component. caused by unwanted environmental factors. Signal processor followed by sensor output added noise immune performance by filtering out unwanted component. Fail-proof patient breath monitoring scheme was realized by using intelligent decision algorithm. Unlike the conventional approach by using mechanical sensor, which have high sensitivity both to intruder and to environmental noise, our approach provided reliable breath motion detection.

  • PDF