• Title/Summary/Keyword: Plug tray

Search Result 68, Processing Time 0.02 seconds

Growth Characteristics of Spinaches by Nursery Media and the Seeding Number Per Plug Tray Cell in Hydroponics (시금치의 육묘배지와 파종 종자량에 따른 수경재배 생육 특성)

  • Seo, Jong-Bun;Jung, Jong-Mo;Kim, Sun-Kook;Choi, Kyong-Ju;Kim, Joung-Geun;Hong, Sae-Jin
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.62-66
    • /
    • 2007
  • This study was carried out to develop the stable plug seedling production for hydroponics of spinaches by various nursery media, plug tray size and seed number per plug tray cell. When plant grown in various nursery media, the seeding stand rate was shown in order of granular rockwool with good water retention, granular rockwool>granular rockwool mixed with pearlite>cocopeat>pearlite>poly urethane foame. Thus, poly urethane foame indicated the lower seedling stand rate. There was no difference in growth of the seedlings md the seeding stand rate by the plug tray size, and no significant difference in the plant height and the number of leaves among the seed number per plug tray cell. But, leaf area of plant in 2 grains seeding per cell was $113.0cm^2$, was wider in compared with 5 grains seeding of which leaf area was $88.0cm^2$. Accordingly, the leaf area per plant decreased as more and more the number of seeds per plug tray cell increased. The fresh weight of a plant per plug tray cell was the heaviest with 12.5g in the 2 grains, and the total fresh weight of plants per cell was 33.9g in 4 grains seeding, thus it tended to was bigger compared with other treatments. Consequently, given that the number of seeds per cell was decreased, the fresh weight of a plant increased. On the other hand, the total fresh weight per cell showed a tendency to be reducing as more and more the number of seeds per plug tray cell decreased. The yield in the 4 grains seeding was increased by 46% as $14,910kg{\cdot}ha^{-1}$ in compared with the yield in 2 grains seeding as $10,200kg{\cdot}ha^{-1}$.

Effects of Plug Cell Trays, Soil and Shading Rates on Seed Germination and Seedling Growth Characteristics of Hippophae rhamnoides L.

  • Lee, Songhee;Cho, Wonwoo;Chandra, Romika;Han, Jiwon;Kang, Hoduck
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.55-61
    • /
    • 2020
  • In this study, basic data with respect to the introduction of Hipphophae rhamnoides L. and its cultivation in Korea could be obtained. According to the size of the plug cell tray, Chinese origin's rate of seed germination was relatively high in 128 plug cell tray, and growth was vibrant in 50 plug cell tray. The germination and growth of Russian origin seeds showed that they were relatively effective in 50 plug cell tray and with respect to soil environment, TKS-2 soil with untreated shading relatively promoted both germination and growth for Chinese origin, the rate of germination was high in bed soil for horticulture and growth result was good in TKS-2 in the case of Russian origin. It was confirmed that the germination rate of Chinese origin H. rahmnoides L. was highest in untreated shading and the shoot growth was vibrant in 70% shading while the growth in roots was vibrant in the untreated shading. In the Russian origin, H. rhamnoides L. the germination rate in 30% and 70% shading was about 50% which was higher than that in the untreated shading and general growth was vibrant in 30% shading.

Evaluation of pepper seedling growth according to the growing period and tray for automatic transplanting

  • Md Nafiul, Islam;Md Zafar, Iqbal;Mohammod, Ali;Ye-Seul, Lee;Jea-Keun, Woo;Il-Su, Choi;SunOk, Chung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.945-956
    • /
    • 2021
  • The effective growth of pepper seedlings relies on the growing period and tray used, which both aim to minimize seedling damage during the transplantation process. Therefore, the objective of this study was to evaluate the effect of red and green pepper seedling growth in plug and cylindrical paper pot (CPP) trays with different growth periods of the seedlings. Two different seedling growth trays were used for the two varieties of pepper seedlings in the same growing media. The pepper seedling growth rates were investigated at 15, 30, and 45 days for each of variety. Important parameters, e.g., the plant height, fresh weight for the plant and root, number of leaves, leaf length and width, and leaf chlorophyll contents, were measured. During the experiment, the CPP tray maintained uniform seedling growth as compared to the plug tray. CPP trays ensured the height of the seedling, with these results 0.84 to 1.6 times higher than those of the plug tray for all conditions, indicating the good quality of the pepper seedlings. The shoot and root weights were found to be greater with more leaves in the CPP tray seedlings for 45 days compared to the seedlings grown in the plug tray, whereas the green pepper variety showed a greater leaf ratio than the red pepper seedlings. The analysis of pepper seedling growth presented in this study will guide the selection of suitable growth trays and seedling periods for farmers when they undertake automatic pepper transplantation in the field.

Automatic Feeding and Transplanting Mechanism for Plug Seedling Transplanter (플러그묘 자동이식기의 묘 자동공급 및 이식기구에 관한 연구)

  • 민영봉;문성동
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.259-270
    • /
    • 1998
  • An automatic seedling transplanter, employed an innovative plug-seedling feeder was developed by improving the problems of conversational feeding and transplanting mechanisms. With conventional methods, missing and damage rates of seedling were high for long seedlings over 20cm and also breaking seed-bed was frequently observed. Thus, a pushout-bucket slide-hopper type trandsplanter was devised and tested. Test results of picking and transferring accuracies of the developed transplanter are as follows : A prototype transplanter performed with 1.5% of missing rate. The deviations of horizontal feed ranged from -0.3mm to 2.8mm and averaged 0.673mm for the 128-hoe test tray : and ranged from -lmm to +3mm and averaged 0.785mm for the 200-hole test tray. The deviations could decrease with precise manufacturing and lightening the mechanism. The maximum and deviations of vertical feed were -2.3mm and + 1mm, respectively, for the 128-hole test tray ; and were +3mm and +2.5mm, respectively, for the 200-hole test tray. The missing rate, seeding bruise rate and seed-bed damage rate were esitmate to be 1.3%, 0.4% and 3.5%, respectively, with the developed automatic transplanter.

  • PDF

Effects of Plug Cell Size and Media on Gerbera Seedling Growth (플러그셀 크기 밑 용토가 거어베라의 묘생장에 미치는 영향)

  • Cho, Moon-Soo;Ye, Byong-Kwea;Park, Yun-Young;Jun, Ha-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.60-64
    • /
    • 2003
  • This study was conducted to examine the effects of plug tray cell size and growth media on good seedling production of Gerbera hybrida Hort. Seedlings were grown for 60 days in 50, 72, 128, 162 cell trays contanning perlite, cocopeat and perlite+cocopeat(1:1, v/v). Perlite showed higher bulk density than cocopeat and perlite+cocopeat. Total porosity was greater in perlite, cocopeat and perlite+cocopeat in order. Cocopeat showed the highest water holding capacity. Number of leaves were greatest in 128 cell tray containing cocopeat. Leaf area was greatest in 50 cell tray containing cocopeat. Seedling growth was also better in plug tray of bigger cell size. Seedling growth of fresh and dry weight of shoot and root was much better in the growth media of perlite+cocopeat.

Image Processing Algorithm for Robotic Plug-Seedling (플러그 묘 이식용 로봇의 영상 처리 알고리즘)

  • 김철수;김만수;김기대
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A color image processing algorithm was developed to assist the robotic plug-seedling transplanter. The algorithm was designed to identify and locate empty cells in the seedling tray. The image of pepper seedling tray was segmented into regions of plant, frame and soil using thresholding technique which utilized HSI or RGB color characteristics of each region. The detection algorithm was able to successfully identify empty cells and locate their two-dimensional location. The overall success rate of the algorithm was about 88%.

  • PDF

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition (인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성)

  • Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM PART I

  • Uenaka, T.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.757-763
    • /
    • 2000
  • It is fundamental to control individual condition of every seedling. Automatic individual control is used by data control and analysis at on-line. As a result the best condition system was build without all waste. This system uses one of new technology irrigation system. This irrigation system supply accurate quantity of nutrient solution in the shortest time. The system named the upward injection irrigation system. First of all it is necessary to be considered whether the soil is proper or improper for upward injection irrigation system. It is important that root absorb nutrient solution as fast as possible. The ability of spreading, storing water, contamination of environment and cost were considered when choose the medium. The soil of organic culture is developed recently. The soil consists of paper pulp and vermiculite. The new soil is more suitable than ordinary medium for growing plant because this medium is made of paper pulp. The ability of store and spread of water is it's feature. We can make paper tray of this paper pulp's raw material. It is possible that pulp tray replaced plastic tray. The original plug tray of growing seedling system can make which consist of pulp medium and pulp tray. In this study, it was examined whether the plug seedling of paper pulp medium grow with upward injection irrigation system in this seedling plant system. At the same time, examine ability of store and spread of water and how to grow plant on the paper pulp medium.

  • PDF

Recognition of Missing and Bad Seedings via Color Image Precessing (칼라 영상처리에 의한 결주 및 불량모 인식)

  • 손재룡;강창호;한길수;정성림;권기영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.253-262
    • /
    • 2001
  • This study was conducted to develop the vision system of a robotic transplanter for plug-seedling. A color image processing algorithm was developed to identify and locate empty cells and bad plants in the seedling tray. The image of pepper and tomato seedling tray was segmented into regions of plants, frame and soil using threshold technique which utilized Q of YIQ for finding leaves and H of HSI for finding frame of tray in the color coordinate system. The recognition system was able to successfully identify empty cells and bad seeding and locate their two-dimensional locations. The overall success rate of the recognition system was about 99%.

  • PDF

Effect of Fertilizer Levels and Shading Rate on Seeding Growth of Thalictrum Species Native to Korea (시비수준과 차광처리가 자생 Thalictrum 속 식물의 유묘생장에 미치는 영향)

  • Lee, Wan-Hee;Lee, Seung-Youn;Kang, Jung-Hwa;Lee, Taek-Joo;Kim, Ki-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2015
  • Thalictrum species belongs to the Ranunculaceae and are perennial landscape plants which are available in the garden and potted plants. This experiment was conducted to find out the basic data for the growth effects of fertilizer levels and shading rate in seedling plug cell tray in the Thalictrum rochebrunianum, T. uchiyamai and T. coreanum. For T. rochebrunianum and T. uchiyamai, growth increased by all fertilizer level treatments as compared to non-treatment. Hyponex 1000 times of treatment showed the highest growth. All growth increased in 35% shading as compared to other treatments for T. rochebrunianum and T. coreanum. But, for T. uchiyamai growth increased in 55% shading. In general, growth of three Thalictrum species was worse in 75% shading, as compared to other shading rates. Based on the results, Thalictrum species seedling can be produced by 35-55% shading and fertilization of Hyponex 1000 times by using plug tray.