• Title/Summary/Keyword: Pneumatic Valve

Search Result 184, Processing Time 0.026 seconds

Characteristic Analysis and Experiment of Pneumatic Servo Valve (공기압 서보밸브 특성해석 및 실험)

  • Kim, Dong-Soo;Lee, Won-Hee;Choi, Byung-Oh
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.967-973
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve.

  • PDF

Development of Direct Drive type Pneumatic Servo Valve (직동식 공기압 서보밸브 개발)

  • Kim, Dong-Su;Lee, Won-Hui;Choe, Byeong-O
    • 연구논문집
    • /
    • s.34
    • /
    • pp.69-77
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. Further, the performance of pneumatic servo valve has been verified through an overall performance test on the developed product.

  • PDF

Experimental Study on the Characteristics of Pneumatic Valve with Piezoelectric Element (압전소자 밸브 특성에 관한 실험적 연구)

  • 윤소남;함영복;조정대;유찬수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.828-831
    • /
    • 2003
  • The benefits of the pneumatic valve with piezoelectric element are faster response times, low energy consumption, and the ability to be used in hazardous environments and field bus systems. In this paper, PZT actuator, 2 and 3 stages pneumatic valve were designed and manufactured. Also. characteristics of the pneumatic valve with piezoelectric element were tested with a testing system. It is confirmed that the PZT actuator is useful one for controlling the direction of pilot valve.

  • PDF

Endurance of Pneumatic Valve with a Multi-bender PZT Actuator (적층 벤더형 압전식 공압밸브의 내구 특성)

  • Yun, So-Nam;Park, In-Sub
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.31-36
    • /
    • 2014
  • In this paper, pneumatic valve which consists of valve body, valve controller, nozzle and a multi-bender PZT actuator was suggested and fabricated. The fabricated pneumatic valve was experimented for performance evaluation. From the experimental results, we know that the flow rate of the suggested valve is 23 lpm at the pressure difference of 1bar and the maximum flow rate is 30 lpm at the pressure difference of 4 bar. The flow rates after endurance test of 9.8 million were 22.57 lpm and 28.62 lpm at the pressure difference of 1bar and 4bar, respectably. Finally, it was verified that the B10 life of the suggested pneumatic valve is over 50 million.

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

Development of automatic measurement system for dynamic respose time of pneumatic solenoid valve (공압밸브의 동적응답 특성측정 자동화 시스템 개발)

  • 강보식;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.974-978
    • /
    • 1991
  • Electro-pneumatic valve is an electro-mechanical device which converts electric signal into pneumatic flow mu or pressure. A measurement of dynamic response time is very important to evaluate valve performance. Dynamic response time of electro-pneumatic valve has a variation accordance with valve types, operating way and test standard. In this study, automatic measurement system of dynamic response time is composed based on test condition of dynamic response time test standard(CETOP, JIS). Also, in this study test pressure variation characteristics accordance with variation of solenoid excitation power, and we developed dynamic response measurement system enable to compare of and analyze these two characteristics.

  • PDF

Development of Solenoid Valve for the Exhaust Brake of Diesel Engines (디젤차량 배기 브레이크용 솔레노이드 밸브의 개발)

  • Yun, S.N.;Ham, Y.B.;Jo, J.D.;Ryu, B.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.19-24
    • /
    • 2003
  • Exhaust brake system for Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with on-off solenoid. Exhaust brake valve which is core component of exhaust brake system should have characteristics such as high reliability and long life. In this paper. exhaust brake valve with on-off solenoid which is used for vehicle brake system was studied. For the performance evaluation of on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. As a basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve with on-off solenoid were suggested and the performance of the pneumatic valve was evaluated through tests.

  • PDF

Simulation Study on Dynamic Analysis of Spring Type Needle Valve to Absorb Surge Pressure in Pneumatic Cushion Cylinder (공압 쿠션 실린더의 충격압 흡수를 위한 스프링형 니들밸브의 동특성에 관한 연구)

  • Lee J.G.;Xiaofei Qin;Lee J.;Lee J.C.;Shin H.M.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • The purpose of this study is to find the effective dynamic characteristics of an improved pneumatic cushion cylinder with a spring type needle valve. The dynamic model represented the peak pressure control method when the pneumatic cushion cylinder is moving forward or backward in the horizontal direction. It was found from the simulation results that the peak pressure in the cushion chamber is affected by the spring, which helps to understand the performance of the pneumatic cushion cylinder and to improve or design a better cushion needle valve component. From the simulation results, the stability of pneumatic cushion cylinder with a spring type needle valve was superior and its cushion capability was also better than that without the spring.

  • PDF

Characteristics Analysis of the Solenoid Valve for Exhaust Brake (배기 브레이크용 솔레노이드 밸브의 특성 해석)

  • 윤소남;함영복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.190-195
    • /
    • 2004
  • An exhaust brake system is composed of a gate valve, a pneumatic cylinder and an on-off solenoid valve. An on-off solenoid valve which is a key component of the exhaust brake system ought to have characteristics such as high reliability and long life for reducing the foot brake and tires damage, and for driver's fatigue relief of middle/large size vehicles running a long distance. In this paper, an on-off solenoid valve which is used for vehicle brake system was studied. For the performance evaluation of the on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. On the basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve of on-off solenoid type were suggested and the performance of pneumatic valve through the test procedure was evaluated.

High Performance Position Control of a Pneumatic System (공기압 위치 제어 시스템의 성능 향상에 관한 연구)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.60-66
    • /
    • 1998
  • Positioning performance with a normal pneumatic positioning system, is mainly affected by friction force on the actuator and nonlinear characteristics of the control valve. We proposed a positioning system which is composed of a pneumatic actuator and high speed control valve. for accurate and speedy positioning. Driving piston on the actuator is mounted with externally pressurized air bearings to clear the friction force. This paper studies a method in order that improves positioning ability of the pneumatic positioning system considering the nonlinear characteristics of the control valve and the actuator.

  • PDF