• Title/Summary/Keyword: Point-to-point positioning

Search Result 527, Processing Time 0.022 seconds

The Suggestion of Effective Measurement Techniques for Positioning Under Poor GPS Reference Network Condition

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.539-547
    • /
    • 2013
  • This research is suggesting the most effective positioning method for GPS based positioning when no GPS reference point is available in the neighborhood. For this purpose, we carried out positioning of the IGS realtime observatories in Australia in various conditions. According to the research, we were certainly assured the one reference point with a short baseline length is more effective for differential positioning than multiple reference points with a long baseline distance beyond 1,000km and suggested the precise point positioning based positioning method can be an excellent substitute when no reference point is available around an unknown point. The research result may be used as the basic data for accurate positioning in poor reference point environments, especially in Antarctica.

An Open-Loop Method for Point-to-Point Positioning of a Piezoelectric Actuator

  • Henmi, Nobuhiko;Tanaka, Michihiko
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.9-13
    • /
    • 2007
  • We describe how to control a piezoelectric actuator using the open-loop method for point-to-point positioning. Since piezoelectric actuators have nonlinear characteristics due to hysteresis and creep between the input voltage and the resulting displacement, a special method is required to eliminate this nonlinearity for an open-loop drive. We have introduced open-loop driving methods for piezoelectric actuators in the past, which required a large input voltage and an initializing motion sequence to reset the state of the actuator before each movement. In this paper, we propose a new driving method that uses the initializing state. This method also utilizes the overshoot from both the upward and downward stepwise drives. Applying this method., we obtained precise point-to-point positioning without the influence of hysteresis and creep.

Analyzing Characteristics of GPS Dual-frequency SPP Techniques by Introducing the L2C Signal

  • Seonghyeon Yun;Hungkyu Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Several experiments were carried out to analyze the impact of the modernized Global Positioning System (GPS) L2C signal on pseudorange-based point positioning. Three dual-frequency positioning algorithms, ionosphere-free linear combination, ionospheric error estimation, and simple integration, were used, and the results were compared with those of Standard Point Positioning (SPP). An analysis was conducted to determine the characteristics of each dual-frequency positioning method, the impact of the magnitude of ionospheric error, and receiver grade. Ionosphere-free and ionospheric error estimation methods can provide improved positioning accuracy relative to SPP because they are able to significantly reduce the ionospheric error. However, this result was possible only when the ionospheric error reduction effect was greater than the disadvantage of these dual-frequency positioning algorithms such as the increment of multipath and noise, impact of uncertainty of unknown parameter estimation. The RMSE of the simple integration algorithm was larger than that of SPP, because of the remaining ionospheric error. Even though the receiver grade was different, similar results were observed.

Architecture Design for Maritime Centimeter-Level GNSS Augmentation Service and Initial Experimental Results on Testbed Network

  • Kim, Gimin;Jeon, TaeHyeong;Song, Jaeyoung;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • In this paper, we overview the system development status of the national maritime precise point positioning-real-time kinematic (PPP-RTK) service in Korea, also known as the Precise POsitioning and INTegrity monitoring (POINT) system. The development of the POINT service began in 2020, and the open service is scheduled to start in 2025. The architecture of the POINT system is composed of three provider-side facilities-a reference station, monitoring station, and central control station-and one user-side receiver platform. Here, we propose the detailed functionality of each component considering unidirectional broadcasting of augmentation data. To meet the centimeter-level user positioning accuracy in maritime coverage, new reference stations were installed. Each reference station operates with a dual receiver and dual antenna to reduce the risk of malfunctioning, which can deteriorate the availability of the POINT service. The initial experimental results of a testbed from corrections generated from the testbed network, including newly installed reference stations, are presented. The results show that the horizontal and vertical accuracies satisfy 2.63 cm and 5.77 cm, respectively. For the purpose of (near) real-time broadcasting of POINT correction data, we designed a correction message format including satellite orbit, satellite clock, satellite signal bias, ionospheric delay, tropospheric delay, and coordinate transformation parameters. The (near) real-time experimental setup utilizing (near) real-time processing of testbed network data and the designed message format are proposed for future testing and verification of the system.

Accuracy Analysis of Code-based PPP-RTK Positioning Utilizing K-SSR Correction Messages Outside the Reference Network

  • Yoon, Woong-Jun;Park, Kwan-Dong;Kim, Hye-In;Woo., Seung;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) refers to a technology that combines PPP with network-RTK in which a user does not directly receive observed data from a reference station but receives State-Space Representation (SSR) messages corrected for error components from a central processing station through Networked Transport of RTCM via Internet Protocol (NTRIP) or Digital Multimedia Broadcasting (DMB) for purposes of positioning. SSR messages, which refer to corrections used in PPP-RTK, are generated by a central processing station using real-time observed data collected from reference stations and account for corrections needed due to the ionosphere, troposphere, satellite orbital errors, satellite time offsets, and satellite biases. This study used a type of SSR message provided in South Korea, known as Korea-SSR (K-SSR), to implement a PPP-RTK algorithm based on code-pseudorange measurements and validated its accuracy within the reference station network. In order to validate the accuracy of the implemented algorithm outside of the network, the K-SSR was extrapolated and applied to positioning in reference stations in Changchun, China (CHAN) and Japan (AIRA). This also entailed a quantitative evaluation that measured improvements in accuracy in comparison with point positioning. The results of the study showed that positioning applied with extrapolated K-SSR correction data was more accurate in both AIRA and CHAN than point positioning with improvements of approximately 20~50%.

Experimental study on human arm motions in positioning

  • Shibata, S.;Ohba, K.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, characteristics of the motions of a human arm are investigated experimentally. When the conditions of the target point are restricted, human adjusts its trajectory and velocity pattern of the arm to fit the conditions skillfully. The purpose of this work is to examine the characteristics of the trajectory, velocity pattern, and the size of the duration in the following cases. First, we examine the case of point-to-point motion. The results are consistent with the minimum jerk theory. However, individual differences in the length of the duration can be observed in the experiment. Second, we examine the case which requires accuracy of positioning at the target point. It is found that the velocity pattern differs from the bell shaped pattern explained by the minimum jerk theory, and has its peak in the first half of the duration. When higher accuracy of the positioning is required, learning effects can be observed. Finally, to examine the case which requires constraint of the arm posture at the target point, we conduct experiments of a human trying to grasp a cup. It is considered that this motion consists of two steps : one is the positioning motion of the person in order to start the grasping motion, the other is the grasping motion of the human's hand approaching toward the cup and grasping it. In addition, two representative velocity patterns are observed : one is the similar velocity pattern explained in the above experiment, the other is the velocity pattern which has its relative maximum in the latter half of the duration.

  • PDF

Improved LTE Fingerprint Positioning Through Clustering-based Repeater Detection and Outlier Removal

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.369-379
    • /
    • 2022
  • In weighted k-nearest neighbor (WkNN)-based Fingerprinting positioning step, a process of comparing the requested positioning signal with signal information for each reference point stored in the fingerprint DB is performed. At this time, the higher the number of matched base station identifiers, the higher the possibility that the terminal exists in the corresponding location, and in fact, an additional weight is added to the location in proportion to the number of matching base stations. On the other hand, if the matching number of base stations is small, the selected candidate reference point has high dependence on the similarity value of the signal. But one problem arises here. The positioning signal can be compared with the repeater signal in the signal information stored on the DB, and the corresponding reference point can be selected as a candidate location. The selected reference point is likely to be an outlier, and if a certain weight is applied to the corresponding location, the error of the estimated location information increases. In order to solve this problem, this paper proposes a WkNN technique including an outlier removal function. To this end, it is first determined whether the repeater signal is included in the DB information of the matched base station. If the reference point for the repeater signal is selected as the candidate position, the reference position corresponding to the outlier is removed based on the clustering technique. The performance of the proposed technique is verified through data acquired in Seocho 1 and 2 dongs in Seoul.

Development of Precise Point Positioning Method Using Global Positioning System Measurements

  • Choi, Byung-Kyu;Back, Jeong-Ho;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Precise point positioning (PPP) is increasingly used in several parts such as monitoring of crustal movement and maintaining an international terrestrial reference frame using global positioning system (GPS) measurements. An accuracy of PPP data processing has been increased due to the use of the more precise satellite orbit/clock products. In this study we developed PPP algorithm that utilizes data collected by a GPS receiver. The measurement error modelling including the tropospheric error and the tidal model in data processing was considered to improve the positioning accuracy. The extended Kalman filter has been also employed to estimate the state parameters such as positioning information and float ambiguities. For the verification, we compared our results to other of International GNSS Service analysis center. As a result, the mean errors of the estimated position on the East-West, North-South and Up-Down direction for the five days were 0.9 cm, 0.32 cm, and 1.14 cm in 95% confidence level.

Evaluation of Point Positioning Using the Global Positioning System and the Quasi-Zenith Satellite System as Measured from South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite system currently under development, was designed to complement the performance of the Global Positioning System (GPS). The high elevation angle of the QZSS satellite is expected to enhance the effectiveness of GPS in urban environments. Thus, the work described in this paper, aimed to investigate the effect of QZSS on GPS performance, by processing the GPS and QZSS measurements recorded at the Bohyunsan reference station in South Korea. We used these data, to evaluate the satellite visibility, carrier-to-noise density (C/No), performance of single point positioning, and Dilution of Precision (DOP). The QZSS satellite is currently available over South Korea for 19 hours at an elevation angle of more than 10 degrees. The results showed that the impact of the QZSS on users' vertical positioning is greatest when the satellite is above 80 degrees of elevation. As for Precise Point Positioning (PPP) performance, the combined GPS/QZSS kinematic PPP was found to improve the positioning accuracy compared to the GPS only kinematic PPP.

Development of Precise Point Positioning Solution for Detection of Earthquake and Crustal Movement (지진 및 지각변동 감지를 위한 정밀절대측위 솔루션 개발)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4587-4592
    • /
    • 2013
  • GPS is recognized the essential method to obtain the best result in the sphere of earth science that is setting of International Reference Frame, decision of the rotation coefficient about the earth rotation axis, detection of the crustal deformation, and observation of the diastrophism by high precision positioning except for navigation, geodetic survey and mapping. Therefore, in this study, it was attempted to build an expert service that enables non-experts to use high-precision GPS data processing. As a result, an Precise Point Positioning Solution that can maximize user convenience simply by entering the minimum required information for GPS data processing was developed, and the result of Precise Point Positioning Solution using GPS data provided by National Geographic Information Institute was compared with result of ITRF.