• Title/Summary/Keyword: Pollutant removal efficiency

Search Result 206, Processing Time 0.031 seconds

A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities (자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구)

  • Lee, Sang Hyuk;Cho, Hye Jin;Kim, Lee Hyung
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

Comparison of pollutant removal efficiency according to the locations of the supply and exhaust (격리병실내 급배기구 위치에 따른 오염물 제거효율 비교)

  • Won, An-Na
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.

Pollutant Removal Efficiency of Sedimentation Basin at Inlet of an Irrigation Reservoir (저수지 내 유입부 침강지의 수질정화 효율)

  • Jang, Jeong-Ryeol;Choi, Sun-Hwa;Kwun, Soon-Kuk
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.473-479
    • /
    • 2004
  • A sedimentation basin (SB) at the inlet of an irrigation reservoir which was constructed using an auxiliary dam was monitored to evaluate its pollutant removal efficiency. Water sampling at three points, i.e., inflow stream, upstream and downstream of the reservoir, were taken 5 times before and after the construction of the SB in 1999 and 2003, respectively. No significant water quality variations in inflow stream were observed during these periods. The COD, T-N, T-P and SS removal efficiencies were 38, 24, 35 and 49%, respectively. The results indicated that those removal efficiencies significantly increased during the rainy season and COD removal efficiency, especially, was higher than others studies. The scale of SB in this study was rational as aspects of pollutant removal efficiency and hydraulic detention time. And it is recommended that SB, at inlet of an reservoir, should be constructed as completely separated structure from reservoir water body and having SAR Index from 0.7% to 1.0%.

Analysis for Removal Efficiency of Non-point Pollution Sources by Constructed Wetlands (인공습지 형태에 따른 비점오염저감효율 분석)

  • Lee, Sang Hyuk;Kim, Lee Hyung;Cho, Hye Jin
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.102-108
    • /
    • 2014
  • Studies of non-point pollutant treatment facilities have widely been conducted for a decade, but natural non-point pollutant treatment facilities implemented on roads have not been carried out for the removal efficiency of non-point pollution sources. This study analyzed the removal efficiency of non-point pollution sources from constructed wetlands using monitoring and event mean concentration method. As a result of this study, removal efficiency of general non-point pollution sources as TSS, COD, BOD is relatively good, but removal efficiency of TN, TP, Cr, Zn, Pb is very small or nothing.

A Study on the Characteristics of Pollutant Removal in Secondary Effluent from Wastewater Treatment Plant Using Silver Nanoparticles on Activated Carbon (은나노 활성탄에 의한 하수 2차 처리수 중의 오염물질 제거 특성에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.353-360
    • /
    • 2014
  • This study targets the pollutant removal of secondary effluent from final clarifiers in wastewater treatment plant using silver nanoparticles on activated carbon. The removal efficiency and treatment characteristics of pollutant are anlayzed by perfoming experiments using granular activated carbon with silver nanoparticles and ordinary granular activated carbon. The specific surface area of granular activated carbon with silver nanoparticles is smaller than that of ordinary granular activated carbon. However, the removal efficiency of $COD_{Mn}$, T-N and T-P in experiments using activated carbon with silver nanoparticles are higher than that in experiment using ordinary granular activated carbon. That means the case of activated carbon with silver nanoparticles is much better at treatment activity. In addition, activated carbon with silver nanoparticles has antimicrobial activity because there is no microbe on the surface of it after experiments.

Effect of Contaminant Source Location on Indoor Air Quality

  • Lee, Hee-Kwan;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.1-7
    • /
    • 1998
  • This paper presents an experimental study for understanding the indoor air quality in a room. A model room, which had a ceiling-mounted supply and a sidewall-mounted exhaust, was used to examine the effect of air exchange rate (AER) and contaminant source location (CSL) as a function of the elapsed time. A tracer gas method, using carbon monoxide tracer, gas analyzers, and a data acquisition system, was applied to study the ventilation air distribution and the tracer removal efficiency, so-called pollutant removal efficiency, in the model room. The experiment was composed of two parts; firstly the AER was varied to examine its effect on the ventilation air distribution and the ventilation effectiveness and secondly both AER and CSL were considered to determine their effect on the pollutant removal efficiency. It was found that the ventilation effectiveness in the model was proportional to AER but not linearly. It was also found that changing the CSL can improve the pollutant removal efficiency. In some cases, the efficiency improvement by increasing AER was achieved by simply changing CSL.

  • PDF

Gas Removal Characteristics of Air Clean System Applying a Magnetic Field (자계가 인가된 공기청정장치의 가스 제거 특성)

  • Shin, Soo-Youn;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.921-925
    • /
    • 2007
  • Gas removal characteristics of an air clean system, consisted of a filter and a nonthermal discharge plasma reactor with a magnetic field, have been investigated with emphasis on the enhancing gas removal efficiency of the applied magnetic field. It is found that the magnetic field influenced significantly to the corona discharge characteristics, decreasing the corona onset voltage and increasing the corona current. As a result, the proposed air clean system with the magnetic field showed the higher removal efficiency of the gas (e.g., trimethlyamine) than that of without the magnetic field. This would be because the magnetic field applied to the discharge plasma reactor of the air clean system can elevate the corona characteristics, and activate the generation of ozone, thus the removal efficiency of the gas was concurrently enhanced. This reveals that the proposed air clean system with the magnetic field could be used as an effective means of removal an indoor pollutant gas.

Evaluation of urban pollutant washoff characteristics and treatment efficiency of a small constructed wetland

  • Reyes, Nash Jett DG.;Geronimo, Franz Kevin F.;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.412-412
    • /
    • 2019
  • Nature-based solutions (NBS) offer a wide variety of techniques that promote cost-efficient stormwater management practices. In particular, low impact development facilities utilize NBS principles to restore the ecosystem services in a highly-urbanized area. Despite the advancements in these technologies, several considerations should still be addressed to ensure optimum functionality and attainment of desired pollutant removal efficiency a LID facility. This study evaluated the mass flushing characteristics of pollutants in an urban catchment and the efficiency of a small constructed wetland (SCW) in treating urban stormwater runoff. 21 rainfall events from 2010 to 2018 were monitored to determine and quantify stormwater pollutants. The highest pollutant washoff was observed on rainfall depths ranging from 0.1mm to 10mm, whereas events with greater rainfall depths exhibited lower pollutant concentrations due to dilution effect. However, the SCW manifested lower pollutant-removal performance on rainfall depths exceeding 10mm due to the exceedance of the facility's design rainfall. This study is beneficial in assessing the dynamics of pollutant washoff and efficiency of LID facilities subjected under various external factors.

  • PDF

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

Effect of Road Sweeping on the Abatement of Runoff Pollution Loads from in the Highway (고속도로 노면 청소에 따른 강우시 유출오염부하 저감 효과 분석)

  • Kang, Heeman;Lee, Doojin;Yoon, Hunsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.851-860
    • /
    • 2012
  • In this study, to evaluate the abatement of runoff pollution loads by the road sweeping(cleaning), various investigations are implemented at the sample area of the highway. As the results of evaluating the removal efficiency of pollutants along road cleaning, TSS showed about 78 % of the removal efficiency and COD showed 49 % of removal efficiency through the operation of cleaning vehicle of vacuum suction method. In case of TN and TP, they showed the relatively-lower removal efficiency by 30~35 %. TSS removal efficiency along the number of cleaning appeared about 60 % in case of one time of cleaning and the additional removal effect did not appear though the number of cleaning increased to two times. With running speed of cleaning vehicle, TSS removal ratio is lessened from 60 % to 20 % when cleaning vehicle speed up to 20 km/hr from 6 km/hr. It seems that the reasons why the removal efficiencies are inversely proportional to its speed are related to the lower vacuum efficiencies and the disturbed particles on the road. In the pollutant build-up analysis, it is showed that it takes more time to the critical pollutant build-up in the shoulder than the center of the road. It is also showed that the proper cleaning cycle is recommended as 4~6 dry weather days without rainfall events.