• Title/Summary/Keyword: Poly Fit

Search Result 20, Processing Time 0.027 seconds

Evaluation of the marginal and internal fit of a single crown fabricated based on a three-dimensional printed model

  • Jang, Yeon;Sim, Ji-Young;Park, Jong-Kyoung;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.367-373
    • /
    • 2018
  • PURPOSE. To evaluate the fit of a crown produced based on a 3D printed model and to investigate its clinical applicability. MATERIALS AND METHODS. A master die was fabricated with epoxy. Stone dies were fabricated from conventional impressions (Conventional stone die group: CS, n=10). Digital virtual dies were fabricated by making digital impressions (Digital Virtual die group: VD, n=10). 3D data obtained from the digital impression was used to fabricate 3D printed models (DLP die group: DD, n=10, PolyJet die group: PD, n=10). A total of 40 crowns were fabricated with a milling machine, based on CS, VD, DD and PD. The inner surface of all crowns was superimposed with the master die files by the "Best-fit alignment" method using the analysis software. One-way and 2-way ANOVA were performed to identify significant differences among the groups and areas and their interactive effects (${\alpha}=.05$). Tukey's HSD was used for post-hoc analysis. RESULTS. One-way ANOVA results revealed a significantly higher RMS value in the 3D printed models (DD and PD) than in the CS and DV. The RMS values of PD were the largest among the four groups. Statistically significant differences among groups (P<.001) and between areas (P<.001) were further revealed by 2-way ANOVA. CONCLUSION. Although the fit of crowns fabricated based on the 3D printed models (DD and PD) was inferior to that of crowns prepared with CS and DV, the values of all four groups were within the clinically acceptable range (<$120{\mu}m$).

A Study on the Aperiod Bearing Only TMA (비주기 Bearing 표본입력에 대한 BOTMA 연구)

  • 이동훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.30-40
    • /
    • 2001
  • This paper presents a study on the design and simulation of bearing only target motion analysis to enhance the TMA capability using SONAR in underwater environment. A bearing only target motion analysis algorithm using aperiod bearing input signals has been developed and simulated in the MATLAB.

  • PDF

Accuracy of three-dimensional printing for manufacturing replica teeth

  • Lee, Keun-Young;Cho, Jin-Woo;Chang, Na-Young;Chae, Jong-Moon;Kang, Kyung-Hwa;Kim, Sang-Cheol;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.45 no.5
    • /
    • pp.217-225
    • /
    • 2015
  • Objective: Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods: Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results: Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions: This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment.

Mechanical degradation kinetics of poly(ethylene oxide) in a turbulent flow

  • Sung, Jun-Hee;Lim, Sung-Taek;Kim, Chul-Am;Heejeong Chung;Park, Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.57-62
    • /
    • 2004
  • Turbulent drag reduction (DR) efficiency of water soluble poly(ethylene oxide) (PEO) with two different molecular weights was studied as a function of polymer concentration and temperature in a turbulent flow produced via a rotating disk system. Its mechanical degradation behavior as a function of time in a turbulent flow was also analyzed using both a simple exponential decay function and a fractional exponential decay equation. The fractional exponential decay equation was found to fit the experimental data better than the simple exponential decay function. Its thermal degradation further exhibited that the susceptibility of PEO to degradation increases dramatically with increasing temperature.

A Study on Fashion Design of Silver Age -Focused on Elderly Women's Clothing Design Preference : An Application of Delphi Method- (실버패션디자인 연구 - 노년여성의 의복디자인선호도를 중심으로: 델파이법의 적용 -)

  • Chang, An-Hua
    • Fashion & Textile Research Journal
    • /
    • v.7 no.6
    • /
    • pp.577-584
    • /
    • 2005
  • The aims of this study are primary data offer to silver fashion enterprise. In order to deduce design from diverse needs of silver generation, this study is required expert knowledge. For this purpose, this study applied two rounded Delphi method in which 31 experts. As a result, the following findings were obtained; From the previous studies, we found the physical changes of women in silver generation; i.e. the size of their waist and abdomen gets larger, their breasts are sagging, their limbs are thinner, upper body is bending, their height and weight get shorter and lighter. Their choice criterion of design of clothing is hide their weak points in body, youthfulness, moderate, and fashion style. Youthful design but patterns should agree with their body line so that they should be easily fit and look young. They like a jacket and pants set best regardless of spring or summer and as upper garment, they like semi fit, as pants, they prefer straight line of ankle length, and as skirts, partial elastic band and pleats, and the length of the skirts just cover their knees. This pattern in choosing their clothes represents they consider functionality as well as the aesthetics. Their preferred color for spring is lt/pink, lt/violet lt/green for summer, white and blue. Their preferred materials are wool/poly/spandex and cotton/spandex for functionality for spring, and for summer, linen poly and cotton poly seersucker for cool feeling and stability. In both top and bottom item, solid pattern follows small one in their preference on patterns, which shows that they are in pursuit of an elegant style. Our research based on this survey tries to establish what the fashion design for the silver generation should take into consideration.

Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties

  • Vakhshouri, Behnam
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.581-597
    • /
    • 2020
  • Light-Weight Concrete containing Expanded Poly-Styrene Beads (EPS-LWC) is an approved structural and non-structural material characterized by a considerably lower density and higher structural efficiency, compared to concrete containing ordinary aggregates. The experimental campaign carried out in this project provides new information on the mechanical properties of structural EPS-LWC, with reference to the strength and tension (by splitting and in bending), the modulus of elasticity, the stress-strain curve in unconfined compression, the absorbed energy under compression and reinforcement-concrete bond. The properties measured at seven ages since casting, from 3 days to 91 days, in order to investigate their in-time evolution. Mathematical relationships are formulated as well, between the previous properties and time, since casting. The dependence of the compressive strength on the other mechanical properties of EPS-LWC is also described through an empirical relationship, which is shown to fit satisfactorily the experimental results.

Compact Gate Capacitance Model with Polysilicon Depletion Effect for MOS Device

  • Abebe, H.;Morris, H.;Cumberbatch, E.;Tyree, V.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.209-213
    • /
    • 2007
  • The MOS gate capacitance model presented here is determined by directly solving the coupled Poisson equations on the poly and silicon sides, and includes the polysilicon (poly) gate depletion effect. Our compact gate capacitance model exhibits an excellent fit with measured data and parameter values extracted from data are physically acceptable. The data are collected from 0.5, 0.35, 0.25 and $0.18{\mu}m$ CMOS technologies.

A new low dielectric constant barium titanate - poly (methyl methacrylate) nanocomposite films

  • Upadhyay, Ravindra H.;Deshmukh, Rajendra R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • In the present investigation, nanocomposite films with poly(methyl methacrylate) (PMMA) as a polymer matrix and barium titanate as a filler were prepared by solution casting method. Barium titanate nano particles were prepared using Ti(IV) triethanolaminato isopropoxide and hydrated barium hydroxide as precursors and tetra methyl ammonium hydroxide (TMAH) as a base. The nanocomposite films were characterized using XRD, FTIR, SEM and dielectric spectroscopy techniques. Dielectric measurements were performed in the frequency range 100 Hz-10 MHz. Dielectric constant of nanocomposites were found to depend on the frequency, the temperature and the filler fraction. Dissipation factors were also influenced by the frequency and the temperature but not much influenced by the filler fractions. The 10 wt% of BT-PMMA nanocomposite had the lowest dielectric constant of 3.58 and dielectric loss tangent of 0.024 at 1MHz and $25^{\circ}C$. The dielectric mixing model of Modified Lichtenecker showed the close fit to the experimental data.

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook;Jin, Byung-Suk;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.491-498
    • /
    • 2006
  • The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF