• Title/Summary/Keyword: Polymeric Composite

Search Result 290, Processing Time 0.027 seconds

Electro-controllable omni-directional laser emissions from a helical polymeric network composite film

  • Jang, Won-Gun;Park, Byoung-Choo;Kim, Min-A;Kim, Sun-Woong;Kim, Yun-Ki;Choi, Eun-Ha;Seo, Yoon-Ho;Cho, Guang-Sup;Kang, Seung-Oun;Takezoe, Hideo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.883-886
    • /
    • 2008
  • In optical information technology, an electro-controllable Photonic Band Gap (PBG) in a photonic crystal (PC) material is potentially useful for the manipulation of light. Despite a great deal of research on PBGs, the reliable use of electro-active PBG material systems is restricted to only a few cases because of the complex and limiting nature of the structures involved. Here, we propose a PBG system that uses a liquid crystal (LC) polymer composite. The composite is made of nematic LCs (NLCs) embedded in polymeric helical networks of photo-polymerized cholesteric LCs (CLCs). The composite film shows a large field-induced reversible color shift over 150 nm of the reflection band, due to the reorientational undulation of the helical axis, similar to the Helfrich effect.

  • PDF

The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research

  • Arani, Ali Ghorbanpour;Farazin, Ashkan;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.327-337
    • /
    • 2021
  • In this review, composite structures are used for many industries for at least four decades. Polymeric composites are one of the important structures in the aerospace and aviation industry because of their high strength and low weight. In this comprehensive review, mechanical behaviors, physical and mechanical properties of polymeric composites, different types of reinforcements, different methods to fabricate polymeric composites, historical structural composite materials for aviation and aerospace industries, and also different methods for the characterization are reported. How to use various methods of composite preparation using different nanofillers as reinforcements and its effect on the physical properties and mechanical behavior of composites are discussed as well.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Utilization of Some Industrial Wastes for Producing of Polymeric Composite Materials

  • Hojieva, Alohida;Rustamov, Abduvali;Ahmedov, Akmal
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • Polymeric composite materials on the basis of some industrial wastes are obtained. Some physical parameters of experimental samples are determined. The analysis of exploitative properties of these polymer composite materials allows recommending them as a heat-insulating material in constructions.

  • PDF

Laminating Rule for Predicting the Dielectric Properties of the E-glass/Epoxy Laminate Composite (유리섬유/에폭시 복합재료 적층판의 유전성질 예측을 위한 적층판 법칙)

  • Chin, Woo-Seok;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.141-145
    • /
    • 2005
  • Since the electromagnetic properties of fiber reinforced polymeric laminate composite can be tailored effectively by adjusting its composition and regulating the stacking sequence, it is plausible material for fabricating the radar absorbing structures (RAS) of desired performance. In order to design the effective electromagnetic wave (EM) absorber with the fiber reinforced polymeric laminate composite, its electromagnetic characteristics should be available and could be regulated easily in the target frequency bands. In this study, dielectric characteristics of the E-glass/epoxy laminate composites were measured by the free space method in the X-band frequency range ($8.2\;{\sim}\;12.4\;GHz$). In order to describe the dielectric behavior of laminate composites of arbitrary stacking sequences, the equivalent circuit model and the laminating equations for estimating dielectric properties were proposed, and experimentally verified. From the comparison of the predicted and measured data, the proposed method predicted well the experimentally measured data.

  • PDF

Copper Oxide-Modified Polymeric Composite Elecrodes for Amperometric Detection of Carbohydrates in LCEC Analysis

  • 정혜경;박종만
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.952-957
    • /
    • 1997
  • Modified polymeric composite electrodes having highly dispersed CuO particles through the electrode matrix were prepared for LCEC or flow injection analysis of carbohydrates. The composite electrodes were prepared by incorporating carbon black and highly dispersed copper oxide particles in polystyrene matrix cross-linked with divinylbenzene. The analytical characteristics of the electrodes for LCEC and flow injection analysis of carbohydrates were evaluated. Improved performance in LCEC and flow injection analysis of carbohydrates is demonstrated in terms of sensitivity, reproducibility, stability and surface renewability. It was possible to get improved performance of the electrodes as well as adaptability of the electrodes for practical applications by employing highly dispersed catalyst particles through the electrode matrix and robust polymeric electrode matrix.

Ionic-additive Crosslinked Polymeric Sulfur Composites as Cathode Materials for Lithium-Sulfur Batteries

  • Seong, Min Ji;Manivannan, Shanmugam;Kim, Kyuwon;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.453-457
    • /
    • 2021
  • Lithium-sulfur (Li-S) batteries are one of attractive energy conversion and storage system based on high theoretical specific capacity and energy density with low costs. However, volatile nature of elemental sulfur is one of critical problem for their practical acceptance in industry because it considerably affects electrode uniformity during electrode manufacturing. In this work, polymeric sulfur composite consisting of ionic liquid (IL) are suggested to reduce volatility nature of elemental sulfur, resulting in better processibility of the Li-S cell. According to systematic spectroscopic analysis, it is found that polymeric sulfur is consisting of repeating units combining with elemental sulfur and volatility of them is negligible even at high temperature. In addition, the IL-embedded polymeric sulfur shows moderate cycle performance compared to the cell with elemental sulfur. From these results, it is found that the IL-embedded polymeric sulfur composite is applicable cathode candidate for the Li-S cell based on their excellent non-volatility as well as their superior electrochemical performance.

Binary Mixture Rule for Predicting the Dielectric Properties of Unidirectional E-glass/Epoxy Composite Materials (일방향 유리섬유/에폭시 복합재료의 유전성질 예측을 위한 혼합법칙)

  • Chin Woo Seok;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.175-179
    • /
    • 2004
  • Since the electromagnetic properties of fiber reinforced polymeric composites can be tailored effectively by adding small amount of electromagnetic powders to the matrix of composites, they are plausible materials for fabricating the radar absorbing structures (RAS) of desired performance. In order to design the effective electromagnetic wave (EM) absorber with the fiber reinforced polymeric composites, the electromagnetic characteristics with respect to the constituents of the composite should be available in the target frequency band. In order to describe the dielectric behavior of low loss unidirectional fiber reinforced composite, theoretical models and mixture equations for estimating its dielectric constant were proposed with respect to the fiber, matrix volume fractions and fiber orientations, and verified by the experiments. From the investigation, it was found that the suggested binary mixture rules agreed well with the experimental results.

  • PDF

New Bio-based Polymeric Materials from Plant Oils

  • Uyama, Hiroshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.359-359
    • /
    • 2006
  • This study deals with development of new bio-based polymeric materials from epoxidized soybean oil (ESO). The curing of ESO in the presence of organophilic montmorillonite produced an oil polymer-clay nanocomposite ("green nanocomposite") showing flexible property. A green nanocomposite (oil polymer-silica nanocomposite) coatings were synthesized by an acidcatalyzed curing of ESO with 3-glycidoxypropyltrimethoxysilane. The curing of ESO in the presence of a biodegradable plastic, poly(caprolactone), produced a composite with semi-IPN structure. The mechanical properties of the composite was much superior to those of polyESO. These new oil-based materials have large potential for applications in various fields.

  • PDF

A Study on the Hemisphere-Type Compression Molding for Continous Fiber-Reinforced Polymeric Composites (연속섬유강화 플라스틱 복합재료의 반구형 압축성형성에 관한 연구)

  • 임용진;오영준;김이곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.149-153
    • /
    • 1999
  • During a hemisphere-type compression molding, the wrinkles are caused by complex stress condition. It is very important to clarify the degree of wrinkles in order to have good products. In this paper, the effects of numbers of needling and initial area on the degree of wrinkles are studied. the degree of wrinkle is expressed as nonhomogeneity.

  • PDF