• Title/Summary/Keyword: Polymorphism%2C Single Nucleotide

Search Result 190, Processing Time 0.026 seconds

Identification of polymorphisms in MITF and DCT genes and their associations with plumage colors in Asian duck breeds

  • Sultana, Hasina;Seo, Dongwon;Choi, Nu-Ri;Bhuiyan, Md. Shamsul Alam;Lee, Seung Hwan;Heo, Kang-Nyeong;Lee, Jun-Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.180-188
    • /
    • 2018
  • Objective: The aim of this study was to investigate the effect of single nucleotide polymorphisms (SNPs) of the melanogenesis associated transcription factor (MITF) and dopachrome tautomerase (DCT) genes on plumage coloration in Asian native duck breeds. MITF encodes a protein for microphthalmia-associated transcription factor, which regulates the development and function of melanocytes for pigmentation of skin, hair, and eyes. Among the tyrosinase-related family genes, DCT is a pigment cell-specific gene that plays important roles in the melanin synthesis pathway and the expression of skin, feather, and retina color. Methods: Five Asian duck varieties (black Korean native, white Korean native, commercial Peking, Nageswari, and Bangladeshi Deshi white ducks) were investigated to examine the polymorphisms associated with plumage colors. Among previously identified SNPs, three synonymous SNPs and one indel of MITF and nine SNPs in exon regions of DCT were genotyped. The allele frequencies for SNPs of the black and white plumage color populations were estimated and Fisher's exact test was conducted to assess the association between the allele frequencies of these two populations. Results: Two synonymous SNPs (c.114T>G and c.147T>C) and a 14-bp indel (GCTGCAAAC AGATG) in intron 7 of MITF were significantly associated with the black- and white-colored breeds (p<0.001). One non-synonymous SNP [c.938A>G (p.His313Arg)] in DCT, was highly significantly associated (p<0.001) and a synonymous SNP (c.753A>G) was significantly associated (p<0.05) with black and white color plumage in the studied duck populations. Conclusion: The results of this study provide a basis for further investigations of the associations between polymorphisms and plumage color phenotypes in Asian duck breeds.

Association of Single Nucleotide Polymorphism rs1053004 in Signal Transducer and Activator of Transcription 3 (STAT3) with Susceptibility to Hepatocellular Carcinoma in Thai Patients with Chronic Hepatitis B

  • Chanthra, Nawin;Payungporn, Sunchai;Chuaypen, Natthaya;Pinjaroen, Nutcha;Poovorawan, Yong;Tangkijvanich, Pisit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5069-5073
    • /
    • 2015
  • The single nucleotide polymorphism (SNP) rs1053004 in Signal transducer and activator of transcription 3 (STAT3) was recently reported to be associated with chronic hepatitis B (CHB)-related hepatocellular carcinoma (HCC) in a Chinese cohort. This study was aimed at investigating whether the SNP might also contribute to HCC susceptibility in the Thai population. Study subjects were enrolled and divided into 3 groups including CHB-related HCC (n=211), CHB without HCC (n=233) and healthy controls (n=206). The SNP was genotyped using allelic discrimination assays based on TaqMan real-time PCR. Data analysis revealed that the distribution of different genotypes was in Hardy-Weinberg equilibrium (P>0.05). The frequencies of allele T (major allele) in HCC patients, CHB patients and healthy controls were 51.4%, 58.6% and 61.4%, respectively, whereas the frequencies of C allele (minor allele) were 48.6%, 41.4% and 38.6%. The C allele frequency was higher in HCC when compared with CHB patients (odds ratio (OR)=1.34, 95% confidence interval (CI)=1.02-1.74, P=0.032). The genotype of SNP rs1053004 (CC versus TT+TC) was significantly associated with an increased risk when compared with CHB patients (OR=1.83, 95% CI=1.13-2.99, P=0.015). In addition, we observed a similar trend of association when comparing HCC patients with healthy controls (OR=1.77, 95% CI=1.07-2.93, P=0.025) and all controls (OR=1.81, 95% CI=1.19-2.74, P=0.005). These findings suggest that the SNP rs1053004 in STAT3 might contribute to HCC susceptibility and could be used as a genetic marker for HCC in the Thai population.

Influencing Factors for Cure of Clonorchiasis by Praziquantel Therapy: Infection Burden and CYP3A5 Gene Polymorphism

  • Kim, Chung-Hyeon;Lee, Jeong-Keun;Chung, Byung-Suk;Li, Shun-Yu;Choi, Min-Ho;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • Chemotherapy of clonorchiasis with praziquantel (PZQ) is effective but about 15% of treated cases have been reported uncured. The present study investigated correlation of single nucleotide polymorphisms (SNPs) of the cytochrome P450 gene, CYP3A5 and cure of clonorchiasis. A total of 346 egg passing residents were subjected and treated by 3 doses of 25 mg/kg PZQ. Reexamination recognized 33 (9.5%) uncured and 313 cured. Numbers of eggs per gram of feces (EPGs) before treatment were significantly lower in the cured group than in the uncured group ($2,011.2{\pm}3,600.0$ vs $4,998.5{\pm}7,012.0$, P<0.001). DNAs of the subjects were screened for SNPs at 7 locations of CYP3A5 using PCR. In the uncured group, the SNP frequencies at g.-20555G > A and g.27526C > T of CYP3A5 were 15.2% and 9.1% while those were 3.8% and 1.0%, respectively, in the cured group. The cure rate was Significantly lower in the cases with SNP at g.27526C > T and EPGs ${\geq}$ 1,000. In conclusion, EPGs and SNPs of CYP3A5 are factors which influence cure of clonorchiasis by PZQ therapy. It is strongly suggested to recommend 2-day medication for individuals with high EPGs ${\geq}$ 1,000.

Single Nucleotide Polymorphism of TBC1D1 Gene Association with Growth Traits and Serum Clinical-Chemical Traits in Chicken

  • Manjula, Prabuddha;Cho, Sunghuyn;Suh, Kook Jin;Seo, Dongwon;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.45 no.4
    • /
    • pp.291-298
    • /
    • 2018
  • TBC1D1 gene has known functional effects on body energy homeostasis and glucose uptake pathway in skeletal muscle tissue. This biological function is reported to have significant effects on traits of growth and meat quality in chicken. In this study, we focused on two single nucleotide polymorphisms (SNPs) (g.70179137A>G and g.70175861T>C) identified through SNP annotation information of Korean native chicken and previous literature for TBC1D1 in chicken. Association of SNPs in TBC1D1 with growth and serum clinical-chemical traits were evaluated. A total of 584 male and female birds from five Korean native chicken lines were used in the study. The SNP1 (g.70179137A>G) is located in intron 11 and SNP2 (g.70175861T>C) is a non-synonymous missense mutation in exon 10, responsible for the amino acid change from Methionine to Valine. The A allele of SNP1 and T allele of SNP2 had the highest allele frequencies. Both SNPs indicated moderate polymorphism information content values (0.25

Interethnic Variations of CYP2C19 Genetic Polymorphism

  • Tassaneeyakul, Wongwiwat;Tassaneeyakul, Wichittra
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.145-155
    • /
    • 2001
  • Cytochrome P4502C19 (CYP2C19) is one of human polymorphic xenobiotic-metabolizing enzymes. The enzyme has been reported to catalyze more than 70 substrates, involving more than 100 reactions. These include several classes of therapeutic agents (e.g. anti-microbial. cardiovascular, psycho-active, etc.), sex hormones and insecticides. Associations of the CYP2C19 genotype/phenotype with individual differences in drug efficacy (e.g. diazepam, omeprazole, proguanil) and toxicity (e.g. mephenytoin, barbiturates) have been documented by many investigators. At least 11 allelic variants of CYP2C19 gene were reported to date. Most of the mutant alleles found in the poor metabolizer (PM) led to the production of truncated and/or inactive proteins. Except for the exon 6, single-nucleotide mutations were reported in all nine exons of the gene. Genetic polymorphism of CYP2C19 shows marked interethnic variation with the population frequencies of PM phenotype ranging from 1∼2% up to more than 50%. The prevalence of CYP2C19 PM tends to be higher in Asian and certain Pacific Islanders than other race or ethnic specificity. Genotyping results of CYP2C19 also revealed that there are different proportions of individual mutant alleles among ethnic populations. This may, in part, explains the interethnic difference in the metabolism of certain drugs (i.e. diazepam), though they were from the same CYP2C19 phenotype. Recently, our research group has studied the genotype and phenotype of CYP2C19 and found that the PM frequency (7∼8%) in Thais is lower than other Asian populations. Molecular and clinical impacts of this finding warrant to further investigation.

  • PDF

Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers

  • Nguyen, Thi Lan Anh;Kunhareang, Sajee;Duangjinda, Monchai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1686-1695
    • /
    • 2015
  • Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in $PS{\times}KM$ chickens. For $PS{\times}KT$ populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers.

Identification and Characterization of Single Nucleotide Polymorphisms of SLC22A11 (hOAT4) in Korean Women Osteoporosis Patients

  • Lee, Woon Kyu;Kwak, Jin Oh;Hwang, Ji-Sun;Suh, Chang Kook;Cha, Seok Ho
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.265-271
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most common form of human genetic variation. Non-synonymous SNPs (nsSNPs) change an amino acid. Organic anion transporters (OATs) play an important role in eliminating or reabsorbing endogenous and exogenous organic anionic compounds. Among OATs, hOAT4 mediates high affinity transport of estrone sulfate and dehydroepiandrosterone sulfate. The rapid bone loss that occurs in post-menopausal women is mainly due to a net decrease of estrogen. In the present study we searched for SNPs within the exon regions of hOAT4 in Korean women osteoporosis patients. Fifty healthy subjects and 50 subjects with osteoporosis were screened for genetic polymorphism in the coding region of SLC22A11 (hOAT4) using GC-clamp PCR and denaturing gradient gel electrophoresis (DGGE). We found three SNPs in the hOAT4 gene. Two were in the osteoporosis group (C483A and G832A) and one in the normal group (C847T). One of the SNPs, G832A, is an nsSNP that changes the $278^{th}$ amino acid from glutamic acid to lysine (E278K). Uptake of [$3^H$] estrone sulfate by oocytes injected with the hOAT4 E278K mutant was reduced compared with wild-type hOAT4. Km values for wild type and E278K were $0.7{\mu}M$ and $1.2{\mu}M$, and Vmax values were 1.8 and 0.47 pmol/oocyte/h, respectively. The present study demonstrates that hOAT4 variants can causing inter-individual variation in anionic drug uptake and, therefore, could be used as markers for certain diseases including osteoporosis.

Predicting the Accuracy of Breeding Values Using High Density Genome Scans

  • Lee, Deuk-Hwan;Vasco, Daniel A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • In this paper, simulation was used to determine accuracies of genomic breeding values for polygenic traits associated with many thousands of markers obtained from high density genome scans. The statistical approach was based upon stochastically simulating a pedigree with a specified base population and a specified set of population parameters including the effective and noneffective marker distances and generation time. For this population, marker and quantitative trait locus (QTL) genotypes were generated using either a single linkage group or multiple linkage group model. Single nucleotide polymorphism (SNP) was simulated for an entire bovine genome (except for the sex chromosome, n = 29) including linkage and recombination. Individuals drawn from the simulated population with specified marker and QTL genotypes were randomly mated to establish appropriate levels of linkage disequilibrium for ten generations. Phenotype and genomic SNP data sets were obtained from individuals starting after two generations. Genetic prediction was accomplished by statistically modeling the genomic relationship matrix and standard BLUP methods. The effect of the number of linkage groups was also investigated to determine its influence on the accuracy of breeding values for genomic selection. When using high density scan data (0.08 cM marker distance), accuracies of breeding values on juveniles were obtained of 0.60 and 0.82, for a low heritable trait (0.10) and high heritable trait (0.50), respectively, in the single linkage group model. Estimates of 0.38 and 0.60 were obtained for the same cases in the multiple linkage group models. Unexpectedly, use of BLUP regression methods across many chromosomes was found to give rise to reduced accuracy in breeding value determination. The reasons for this remain a target for further research, but the role of Mendelian sampling may play a fundamental role in producing this effect.

A Novel Single Nucleotide Polymorphism of the Leptin Receptor Gene Associated with Backfat Thickness in Duroc Pigs (두록 돼지의 등지방두께와 연관된 렙틴수용체 유전자의 신규 SNP 마커)

  • Lee, Kyung-Tai;Lee, Hae-Young;Choi, Bong-Hwan;Kim, Jong-Joo;Kim, Tae-Hun
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Fatness is one of the most important economic traits in pigs. The leptin receptor (LEPR) gene may be a potential candidate for the fatness quantitative trait locus (QTL) on porcine chromosome 6, due to its position and physiological role. Thus, this study was carried out to evaluate the associations between structural variants in the LEPR gene and economic traits in pigs. We obtained an approximately 114-kb sequence containing the complete genomic DNA of the porcine LEPR gene, using shotgun sequencing of a bacterial artificial chromosome clone. We report the complete genomic structure of the porcine LEPR gene. Dozens of transcription factor-binding sites were found in the 1.2 kb upstream region from the transcription start point. An association study was performed with 550 Duroc pigs for 24 single-nucleotide polymorphisms (SNPs), including 6 SNPs within exons and 18 SNPs within the putative 5‘ regulatory region of the porcine LEPR gene. Among them, one SNP (−790C/G) was significantly associated with backfat thickness and lean meat percentage, whereas the others, including two SNPs with missense polymorphisms, had no effect on any phenotype. These results suggest that SNP −790C/G may be a useful marker for genetic improvements of fatness and leanness in Duroc pigs.

Cytochrome b Gene-Based Assay for Monitoring the Resistance of Colletotrichum spp. to Pyraclostrobin

  • Dalha Abdulkadir, Isa;Heung Tae, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.616-628
    • /
    • 2022
  • Resistance to pyraclostrobin due to a single nucleotide polymorphism at 143rd amino acid position on the cytochrome b gene has been a major source of concern in red pepper field infected by anthracnose in Korea. Therefore, this study investigated the response of 24 isolates of C. acutatum and C. gloeosporioides isolated from anthracnose infected red pepper fruits using agar dilution method and other molecular techniques such as cytochrome b gene sequencing, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and allele-specific polymerase chain reaction (PCR). The result showed that four isolates were resistant to pyraclostrobin on agar dilution method and possessed GCT (alanine) codon at 143rd amino acid position, whereas the sensitive isolates possessed GGT (glycine). Furthermore, this study illustrated the difference in the cytochrome b gene structure of C. acutatum and C. gloeosporioides. The use of cDNA in this study suggested that the primer Cacytb-P2 can amplify the cytochrome b gene of both C. acutatum and C. gloeosporioides despite the presence of various introns in the cytochrome b gene structure of C. gloeosporioides. The use of allele-specific PCR and PCR-RFLP provided clear difference between the resistant and sensitive isolates. The application of molecular technique in the evaluation of the resistance status of anthracnose pathogen in red pepper provided rapid, reliable, and accurate results that can be helpful in the early adoption of fungicide-resistant management strategies for the strobilurins in the field.