• Title/Summary/Keyword: Polynomial Curve Fitting

Search Result 55, Processing Time 0.035 seconds

Modal Parameter Identification from Frequency Response Functions Using Legendre Polynomials (Legendre 다항식을 이용한 주파수 응답 함수의 곡선접합과 모드 매개변수 규명)

  • Park, Nam-Gyu;Jeon, Sang-Youn;Suh, Jeong-Min;Kim, Hyeong-Koo;Jang, Young-Ki;Kim, Kyu-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.769-776
    • /
    • 2006
  • A measured frequency response function can be represented as a ratio of two polynomials. A curve-fitting of frequency responses with Legendre polynomialis suggested in the paper. And the suggested curve-fitting algorithm is based on the least-square error method. Since the Legendre polynomials satisfy the orthogonality condition, the curve-fitting with the polynomials results to more reliable curve-fitting than ordinary polynomial method. Though the proposed curve-fitting with Legendre polynomials cannot cover all frequency range of interest, example shows that the suggested method is quite applicable in a limited frequency band.

The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm (비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합)

  • Jang, Kyoung-Hoon;Jo, Ho-Sang;Jang, Won-Woo;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper, we proposed non-linear gamma curve algorithm for gamma correction. The previous non-linear gamma curve algorithm is generated by the least square polynomial using the Gauss-Jordan inverse matrix. However, the previous algorithm has some weak points. When calculating coefficients using inverse matrix of higher degree, occurred truncation errors. Also, only if input sample points are existed regular interval on 10-bit scale, the least square polynomial is accurately works. To compensate weak-points, we calculated accurate coefficients of polynomial using eigenvalue and orthogonal value of mat11x from singular value decomposition (SVD) and QR decomposition of vandemond matrix. Also, we used input data part segmentation, then we performed polynomial curve fitting and merged curve fitting results. When compared the previous method and proposed method using the mean square error (MSE) and the standard deviation (STD), the proposed segmented polynomial curve fitting is highly accuracy that MSE under the least significant bit (LSB) error range is approximately $10^{-9}$ and STD is about $10^{-5}$.

Study on Torque precision measuring System using Curve Fitting Algorithm (커브피팅 알고리즘이 적용된 토크 정밀 측정 시스템 개발에 관한 연구)

  • Lee, Ki Won;Ha, Jae Seung;Kang, Seung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2012
  • This paper is the study on the development of a torque precision measuring system using the curve fitting algorithm. This system can be divided into the hardware part and the software part. The hardware part consists of the main base board, the DAQ(Data Aquisition) board and Calibration parts. The software part consists of the software filter module and the curve fitting algorithm module. We have tested the torque transducer including the strain gauge for 200 Nm range and have analyzed the data acquired with the curve fitting algorithm by using this system. The DAQ board converts the electric signal induced by the transducer to the digital value precisely by using the shunt calibration procedure. The main board including the curve fitting algorithm calculates the exact digital torque value by using the digital value from the DAQ board. In this study, we confirmed that the result of the appropriate high-order power-series polynomial function is more accurate than the result of the low-order power-series polynomial through the system.

Curve-fitting in complex plane by a stable rational function (복소수 평면에서 안정한 유리함수에 의한 curve-fitting)

  • 최종호;황진권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.119-122
    • /
    • 1986
  • An algorithm is proposed to find a stable rational function, which is frequently used in the linear system theory, by curve-fitting a given data. This problem is essentially a nonolinear optimization problem. In order to converge faster to the solution, the following method is used. First, the coefficients of the denominator polynomial are fixed and only the coefficients of the numerator polynomial are adjusted by its linear relationships. Then the coefficients of the numerator are fixed and the coefficients of the denominator polynomial are adjusted by nonlinear programming. This whole process is repeated until a convergent solution is found. The solution obtained by this method converges better than by other algorithms and its versatility is demonstrated by applying it to the design of a feedback control system and a low pass filter.

  • PDF

Fitting a Piecewise-quadratic Polynomial Curve to Points in the Plane (평면상의 점들에 대한 조각적 이차 다항식 곡선 맞추기)

  • Kim, Jae-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • In this paper, we study the problem to fit a piecewise-quadratic polynomial curve to points in the plane. The curve consists of quadratic polynomial segments and two points are connected by a segment. But it passes through a subset of points, and for the points not to be passed, the error between the curve and the points is estimated in $L^{\infty}$ metric. We consider two optimization problems for the above problem. One is to reduce the number of segments of the curve, given the allowed error, and the other is to reduce the error between the curve and the points, while the curve has the number of segments less than or equal to the given integer. For the number n of given points, we propose $O(n^2)$ algorithm for the former problem and $O(n^3)$ algorithm for the latter.

Analysis of Lateral Behavior of Steel Pile embedded in Basalt (암반에 근입된 강관말뚝의 수평방향 지지거동 연구)

  • Kim, Khi-Woong;Park, Jeong-Jun;Kim, Jin-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this study, field lateral load test of the pile for analyzing lateral behavior of the offshore wind turbine which is embedded in basalt. After calculating the subgrade resistance and the horizontal deflection from the measured strain to derive p-y curve from the lateral load test results, the subgrade resistance amplifies the error in the process of differentiation and the error of piecewise polynomial curve fitting is the smallest. In order to calculate the horizontal deflection from the measured strain, the six-order polynomial was used.

A Curve-Fitting Channel Estimation Method for OFDM System in a Time-Varying Frequency-Selective Channel (시변 주파수 선택적 채널에서 OFDM시스템을 위한 Curve-Fitting 채널추정 방법)

  • Oh Seong-Keun;Nam Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.49-58
    • /
    • 2006
  • In this paper, a curve-fitting channel estimation method is proposed for orthogonal frequency division multiplexing (OFDM) system in a time-varying frequency-selective fading channel. The method can greatly improve channel state information (CSI) estimation accuracy by performing smoothing and interpolation through consecutive curve-fitting processes in both time domain and frequency domain. It first evaluates least-squares (LS) estimates using pilot symbols and then the estimates are approximated to a polynomial with proper degree in the LS error sense, starting from one preferred domain in which pilots we densely distributed. Smoothing, interpolation, and prediction are performed subsequently to obtain CSI estimates for data transmission. The channel estimation processes are completed by smoothing and interpolating CSI estimates in the other domain once again using the channel estimates obtained in one domain. The performance of proposed method is influenced heavily on the time variation and frequency selectivity of channel and pilot arrangement. Hence, a proper degree of polynomial and an optimum approximation interval according to various system and channel conditions are required for curve-fitting. From extensive simulation results in various channel environments, we see that the proposed method performs better than the conventional methods including the optimal Wiener filtering method, in terms of the mean square error (MSE) and bit error rate (BER).

Iterative Polynomial Fitting Technique Using Polynomial Coefficients for the Nonlinear Line Array Shape Estimation (비선형 선배열 형상 추정을 위한 계수 반복 다항 근사화 기법)

  • Cho, Chom Gun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.20-25
    • /
    • 2006
  • Low frequency towed line array with high array gain and beam resolution is a long range surveillance sensor for anti-submarine warfare. The beam characteristics is however deteriorated due to the distorted line array sensor caused by low towing speed, wind, current, and towing ship maneuvering. An adaptive beamforming method is utilized in this paper to enhance the distorted line array beam performance by estimating and compensating the nonlinear array shape. A polynomial curve fitting in the least square sense is used to estimate the array shape iteratively with the distributed heading sensors data along the array. Real time array shape estimation and nonlinear array beam calculation is applied to a very long towed line array sensor system and the beam performance is evaluated and compared to the linear beamformer for the simulation and sea trial data.

ECAM Control System Based on Auto-tuning PID Velocity Controller with Disturbance Observer and Velocity Compensator

  • Tran, Quang-Vinh;Kim, Won-Ho;Shin, Jin-Ho;Baek, Woon-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • This paper proposed an ECAM (Electronic cam) control system which has simple and general structure. The proposed cam controller adopted the linear and polynomial curve-fitting method to generates a smooth cam profile curve function. Smooth motion trajectory of master actuator guarantees the good performance of slave motion and has an important effect on the interpolation quality of ECAM. The auto-tuning PID velocity controller was applied to overcome the uncertainties in ECAM, and the gains of the controller are updated continuously to ensure the consistency of system performance under varying working conditions. The robustness of system against the varying load torque disturbances and noises is guaranteed by using the load torque disturbance observer to suppress the disturbance on master actuator. The velocity compensator was applied to compensate the degradation of performance of slave motion caused from the varying driving speed of master motion. The stability and validity of the proposed ECAM control system was verified by simulation results.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.