• Title/Summary/Keyword: Polypropylene nonwoven

Search Result 50, Processing Time 0.022 seconds

Electron Beam -Induced Graft Polymerization of Acrylic Aicd on Polypropylene Nonwoven Fabrics(I) (전자빔 가속기를 이용한 폴리프로필렌 섬유의 개질(I) - 전자빔 조사에 따른 폴리프로필렌 섬유의 물리적, 열적 특성변화 -)

  • ;N.I. Shtanko
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • Before studying graft polymerization of PP(polypropylene) nonwoven fabrics by electron beam preirradiation method, mechanical properties, thermal properties and degree of crystallinity of original and electron beam irradiated PP nonwoven fabrics were investigated. Morphological surface changes of electron beam irradiated PP nonwoven fabrics were not observed. And the melting temperature and crystallinity of electron beam irradiated PP nonwoven fabrics also did not change as compared with untreated PP nonwoven fabrics. But the breaking strength of electron beam irradiated PP nonwoven fabrics decreased with increasing electron beam absorbed dose due to breakdown of some parts of polymer main chain.

Electron Beam -Induced Graft Polymerization of Acrylic Acid on Polypropylene Nonwoven Fabrics(II) (전자빔 가속기를 이용한 폴리프로필렌섬유의 개질(II) - 전자빔의 흡수선량 및 중합조건이 그라프트 공중합에 치는 영향 -)

  • ;N.I. Shtanko
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.154-160
    • /
    • 2003
  • Polypropylene nonwoven fabrics were grafted with acrylic acid by a preirradiation method by using electron beam accelerator. The effect of irradiation dose, storage time, concentration of acrylic acid, reaction temperature, reaction time and Mohr's salt concentration on the degree of grafting were investigated in detail. The grafted Polypropylene nonwoven fabrics were characterized using IR spectroscopy and SEM. The results showed that the degree of grafting increased with increasing absorbed dose and the Mohr's salt in the acrylic acid solution promoted grafting efficiency.

Effect of Wood Particle Size on Physical and Mechanical Composites by Nonwoven Web Process

  • Chae, Shoo Geun;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.40-55
    • /
    • 2005
  • This study was carried out to discuss the feasibility of wood and plastic wastes as the raw materials for wood particle-plastic composites. For this purpose, composites were manufactured from coarse and fine wood particles and polypropylene fibers by nonwoven web process. And the effect of wood particle size on the performance of the composites were analyzed according to ASTM D 1037-93. In the physical properties of composites, water absorption decreased with the increase of target density and polypropylene fiber content. And the composites with fine wood particles appeared to have slightly lower water absorption than those with coarse wood particles. Thickness swelling did not vary significantly with the increase of target density but increased with the increase of wood particle content. And the composites with fine wood particles were significantly lower in thickness swelling than those with coarse wood particles. In the mechanical properties of composites, dry and wet MOR showed the increasing tendency with the increase of polypropylene fiber content and target density. Dry and wet MOE showed the increasing tendency with the increase of target density but only wet MOE exhibited the increasing tendency with the increase of polypropylene fiber content. Composites with fine wood particles appeared to be generally higher in wet MOR and MOE than those with coarse wood particles. In conclusion, composites with fine wood particles showed generally higher performance than those with coarse ones. Also, composites were significantly superior to control particleboards in the performance, especially in water absorption and thickness swelling.

Preparation and Characterization of Acrylic Acid Grafted Polypropylene Nonwoven Fabric (아크릴산 그라프트 폴리프로필렌 부직포의 제조와 특성)

  • Kim, Sang-Yool;Na, Choon-Ki
    • Fashion & Textile Research Journal
    • /
    • v.6 no.3
    • /
    • pp.384-392
    • /
    • 2004
  • The purpose of this study is in development of effective filter-type polymer adsorbent for removal of pollutants from wastewater by UV irradiation graft polymerization. Photografting of acrylic acid (AA) on polypropylene (PP) nonwoven fabric using benzophenone (BP) as a photosensitizer was investigated. Inhibition of homopolymerization was achieved by adding various concentrations of $FeSO_4{\cdot}7H_2O$, $CuSO_4{\cdot}5H_2O$ and Mohr's salt. As AA concentration was increased, the degree of grafting was increased as to a specific value and then decreased, and the effect of BP concentration showed the same tendency. It was also found that the degree of grafting increased with reaction time and reaction temperature. Addition of the polyfunctional monomers and $H_2SO_4$ to the grafting system accelerated the photografting. The melting temperature, molecular weight and breaking stress and breaking strain were decreased with the increase in the degree of grafting.

Preparation and Characteristics of Polypropylene Nonwoven Fabric Grafted by Styrene (스티렌 그라프트 폴리프로필렌 부직포의 제조와 특성)

  • Kim, Sang-Yool;Na, Choon-Ki
    • Fashion & Textile Research Journal
    • /
    • v.6 no.3
    • /
    • pp.377-383
    • /
    • 2004
  • Photografting of styrene (St) on polypropylene (PP) nonwoven fabric using benzoin ethyl ether (BEE) as a photosensitizer was investigated. Inhibition of homopolymerization was achieved by adding various concentrations of $FeSO_4{\cdot}7H_2O$, $CuSO_4{\cdot}5H_2O$ and Mohr's salt. As St concentration was increased, the degree of grafting was increased as to a specific value and then decreased, and the effect of BEE concentration showed the same tendency. It was also found that the degree of grafting increased with reaction time and reaction temperature. Addition of the polyfunctional monomers and $H_2SO_4$ to the grafting system accelerated the photografting. The melting temperature, molecular weight, tensile strength and elongation were decreased with the increase in the degree of grafting.

ENGINEERING PROPERTIES OF NATURAL FIBER USED NONWOVEN GEOTEXTILES (천연섬유 부직포 지오텍스타일의 공학적 특성)

  • Jeon, H.Y.;Jang, Y.S.;Lee, K.W.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.267-272
    • /
    • 2008
  • The purpose of this study is to improve the environmental applicability of nonwovens by using special composition. Polypropylene spunbonded and needle punched nonwovens which have the lower cost than polyester nonwovens were used as the raw materials to manufacture the natural fiber used nonwoven geotextiles. These geotextiles were made by use of the thermal bonding methods and composed of jute(or flax)/polypropylene staple fiber blends were obtained in consideration of environmental application. Finally, the engineering properties of natural fiber used nonwoven geotextiles were investigated as eco-friendly materials.

  • PDF

Preparation of Acrylic Acid Grafted Polypropylene by Electron Beam Irradiation and Heavy Metal Ion Adsorption Property (전자선 조사를 이용한 아크릴산이 그라프트된 폴리프로필렌의 제조 및 중금속 이온 흡착 특성)

  • Cheon, Ja young;Jeun, Joon-pyo
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.335-341
    • /
    • 2019
  • In this study, an acrylic acid (AAc) was grafted on a polypropylene (PP) nonwoven fabric using electron beam irradiation. Electron beam grafting was carried out under various conditions to produce AAc grafted PP (PP-g-AAc) nonwoven fabric having a grafting yield of about 50% at radiation dose of 100 kGy and a monomer concentration of 60%. The physical and chemical properties of PP-g-AAc nonwoven fabric were evaluated by SEM, ATR-FTIR, thermal analysis and tensile strength. The morphology of PP and PP-g-AAc nonwoven fabric confirmed by SEM showed no significant change, and it was judged that AAc was introduced into PP nonwoven fabric from ATR-FTIR. PP-g-AAc nonwoven fabric showed an increase in tensile strength and a decrease in tensile strain compared to PP nonwoven fabric. However, since change of value is not significant, it is considered that there is no significant influence on the physical characterization. Adsorption experiments of PP-g-AAc nonwoven fabric on various ions showed selective adsorption behavior for lead ion. In conclusion, the electron beam radiation-induced PP-g-AAc nonwoven fabric is expected to be applied as an effective adsorbent for the adsorption of lead ions.

Physical and Mechanical Properties of Wood Fiber-Polypropylene Fiber Composite Panel

  • Kim, Jee-Woong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.36-46
    • /
    • 2001
  • This study was to find a way of reusing wood and plastic wastes, which considered as a troublesome problem to be solved in this age of mass production and consumption, in manufacturing wood fiber-polypropylene fiber composite panel. And the feasibility of this composite panel as a substitute for existing headliner base panel of automobile was also discussed, especially based on physical and mechanical performance. Nonwoven web composite panels were made from wood fiber and polypropylene fiber formulations of 50 : 50, 60 : 40, and 70 : 30, based on oven-dry weight, with densities of 0.4, 0.5, 0.6, and 0.7 g/$cm^3$. At the same density levels, control fiberboards were also manufactured for performance comparison with the composite panels. Their physical and mechanical properties were tested according to ASTM D 1037-93. To elucidate thickness swelling mechanism of composite panel through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. Test results in this study showed that nonwoven web composite panel from wood fibers and polypropylene fibers had superior physical and mechanical properties to control fiberboard. In the physical properties of composite panel, dimensional stability improved as the content of polypropylene fiber increased, and the formulation of wood fiber and polypropylene fiber was considered to be a significant factor in the physical properties. Water absorption decreased but thickness swelling slightly increased with the increase of panel density. In the mechanical properties of composite panel, the bending modulus of rupture (MOR) and modulus of elasticity (MOE) appeared to improve with the increase of panel density under all the tested conditions of dry, heated, and wet. The formulation of wood fiber and polypropylene fiber was considered not to be a significant factor in the mechanical properties. All the bending MOR values under the dry, heated, and wet conditions met the requirements in the existing headliner base panel of resin felt.

  • PDF

Synthesis and Binder Application of Aqueous Polyurethanes to Nonwoven Fabrics (수성 폴리우레탄의 합성과 부직포 결합제로의 응용)

  • 김병규;김상준
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.188-193
    • /
    • 1993
  • Aqueous polyurethanes(APU) were prepared from polypropylene glycol(PPG), dimethylol propionic acid(DMPA), and isophoron diisocyanate(IPDI) following a prepolymer mixing process. APUs were applied as binder for nonwoven fabrics processing. APU treated nonwoven fabrics generally showed better tear and tensile strength as compared with the untreated ones. In addition, depending on the soft segment length and crosslinking density of the PU, tear strength of APU treated fabrics was favorably compared with solvent type treated one. Similar results were obtained with microfiber nonwoven fabrics, however, the effect was less significant.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(I) - Effects of Process Variables on the Physical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(I) - 공정변수가 복합재의 물리적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Effects of process variables were evaluated in physical properties of the wood fiber-thermoplastic fiber composites using nonwoven web method. Turbulent air mixer using compressed air was employed to mix wood fiber with two types of thermoplastic polypropylene and nylon 6 fibers. The optimal hot press temperature and time were found to be $190^{\circ}C$ and 9 minutes in wood fiber-polypropylene fiber composite and to be $220^{\circ}C$ and 9 minutes in wood fiber-nylon 6 fiber composite. As the density of wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite increased, the physical properties were improved The density appeared to be the most significant factor on physical properties in the statistical analysis. The composition ratio of polypropylene or nylon 6 fiber to wood fiber was considered not to be statistically significant factor. The thickness swelling decreased somewhat in wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite as the content of synthetic fiber increased. As the increase of mat moisture content, dimensional stability was improved in wood fiber-polypropylene fiber composite but not in wood fiber-nylon 6 fiber composite.

  • PDF