• Title/Summary/Keyword: Pool Boiling Correlation

Search Result 26, Processing Time 0.022 seconds

Pool Boiling Heat Transfer Coefficients Upto Critical Heat flux (임계 열유속 근방까지의 풀 비등 열전달계수)

  • Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.571-580
    • /
    • 2008
  • In this work, pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal smooth square surface of 9.52 mm length. Tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from $10\;kW/m^2$ to critical heat flux of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and by thermocouples in the liquid pool. Test results show that pool boiling HTCs of refrigerants increase as the heat flux and vapor pressure increase. This typical trend is maintained even at high heat fluxes above $200\;kW/m^2$. Zuber's prediction equation for critical heat flux is quite accurate showing a maximum deviation of 21% for all refrigerants tested. For all refrigerant data up to the critical heat flux, Stephan and Abdelsalam's well known correlation underpredicted the data with an average deviation of 21.3% while Cooper's correlation overpredicted the data with an average deviation of 14.2%. On the other hand, Gorenflo's and lung et al.'s correlation showed only 5.8% and 6.4% deviations respectively in the entire nucleate boiling range.

Natural Convection Heat Transfer Characteristics of the Molten Metal Pool with Solidification by Boiling Coolant

  • Cho, Jae-Seon;Suh, Kune-Yull;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.719-725
    • /
    • 1997
  • This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation beかeon the Nusselt number and the Rayleigh number in the molten metal Pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer.

  • PDF

The Effect of Coolant Boiling on the Molten Metal Pool Heat Transfer with Local Solidification

  • Cho, Jea-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.34-45
    • /
    • 2000
  • This study is concerned with the experimental test and numerical analysis of the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. In the test, the metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Experiments were performed by changing the test section bottom surface temperature of the metal layer and the coolant injection rate. The two-phase boiling coolant experimental results are compared against the dry test data without coolant or solidification of the molten metal pool, and against the crust formation experiment with subcooled coolant. Also, a numerical analysis is performed to check on the measured data. The numerical program is developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. The present empirical test and numerical results of the heat transfer on the molten metal pool are apparently higher than those without coolant boiling. This is probably because this experiment was performed in concurrence of solidification in the molten metal pool and the rapid boiling of the coolant. The other experiments were performed without coolant boiling and the correlation was developed for the pure molten metal without phase change.

  • PDF

Pool Boiling Heat Transfer Correlation for Pure Refrigerants (순수냉매의 풀비등 열전달 상관식)

  • 고영환;김종곤;송길홍;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.941-949
    • /
    • 2000
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HFC22, HFC125 and HFC32 on a horizontal smooth tube have been measured. The experimental apparatus is specially designed to simulate the real heat transfer tube with the use of the secondary fluid of water as a heat source rather than a conventional electric heat source. Data were taken in the order of decreasing heat flux starting at $80 ㎾/m^2\; and \;ending\; at\; 5㎾/m^2\;in\; the\; poo\;l temperature\; at\; 7^{\circ}C$, Test results showed that HTCs of HFC125, and HFC32 are 50~67% higher than those of HCFC22. It is also found that some of the popular pool boiling heat transfer correlations in the literature are not good to predict the HTCs of newly developed alternative refrigerants. A new correlation was developed by a regression analysis which is based upon the consistent data obtained in this study and it showed an excellent agreement with all experimental data having an absolute mean deviation of less than 10%.

  • PDF

Effects of Tube Diameter on Nucleate Pool Boiling Heat Transfer (튜브 직경이 풀핵비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.930-937
    • /
    • 2000
  • A series of data sets for the heat transfer coefficient versus wall superheat has been obtained experimentally using various combinations of tube diameters ($9.7{\sim}25.5mm$), surface roughness ($15.1{\sim}60.9nm$), and tube orientations (horizontal and vertical) to obtain effects of tube diameters on nucleate pool boiling heat transfer for the saturated water at atmospheric pressure. In addition, the results are compared with the well known Cornwell and Houston's correlation for horizontal tubes to identify the deviation of the present experimental data from the correlation and the applicability of it to vertical tubes. The experimental results show that the heat transfer coefficient decreases as the tube diameter increases for both horizontal and vertical tubes and they are in good agreement with the Cornwell and Houston's correlation within ${\pm}20%$ scatter range.

Pool Boiling Heat Transfer Correlation for Mixture Refrigerants (혼합냉매의 풀비등 열전달 상관식)

  • 고영환;김종곤;박진석;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.122-133
    • /
    • 2001
  • Pool boiling heat transfer coefficients(HTCs) of HFC32/HFC134a, HFC125/HFC134a, HFC32/HFC125 and HFC32/HFC125/HFC134a were measured on a horizontal smooth tube. The experimental apparatus was specially designed to simulate the real heat transfer tube with the use of the secondary fluid of water. Data were taken in the order of decreasing heat flux starting at 80kW/$m^2\; and\; ending\; at\; 5kW/m^2$ in the pool temperature at $7^{\circ}C$. Test results showed that HTCs of these mixtures were 11~38% lower than those of ideal HTCs calculated by a linear mixing rule with pure fluids、 HTCs. Experimental data were compared with Stephan & Korner, Thome, Schlunder, Thome & Shakir、s correlations only to find that those correlations were not satisfactory for all fluids. Hence, a new correlation based on the present data was proposed which could be applied even to the ternary mixture. The correlation predicts the degradation of HTCs of mixtures well, showing a mean deviation of less than 15% for all the mixture data.

  • PDF

Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer Coefficient on Inclined Tube Surface (경사진 튜브 표면의 풀비등 열전달계수 계산을 위한 실험식 개발)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.527-533
    • /
    • 2016
  • A new empirical correlation was developed to identify the effect of an inclination angle on pool boiling heat transfer coefficient of a tube submerged in the saturated water at atmospheric pressure. Through the experiments and the survey of published results 431 data points were obtained and the nonlinear least square method was used as a regression technique. The heat flux of the tube($0{\sim}120kW/m^2$), inclination angle($0^{\circ}{\sim}90^{\circ}$), and the length divided by the diameter of a tube(18~42.52) were selected as major parameters. The newly developed correlation well predicts the experimental data within ${\pm}18%$, with some exceptions.

Pool Boiling Heat Transfer Characteristics of R-l34a in Titanium Horizontal Plain and Low Finned Tubes (티타늄 평활관 및 전열촉진관에서 R-l34a의 관외측 풀비등 열전달 특성에 대한 연구)

  • Heo Jae-Hyeok;Yun Rin;Chung Jin-Taek;Moon Young-lune;Kim Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.854-860
    • /
    • 2005
  • Pool boiling heat transfer characteristics of R-134a were investigated in titanium plain and low finned tubes. The diameter of test tube was 15.88 mm and the fin density was 33 fpi. Tests were conducted at saturation temperatures of $20^{\circ}C$ and $30^{\circ}C$. Heat fluxes varied from 5000 W/$m^2$ to 50,000 W/$m^2$ based on surface area of the plain tube. The pool boiling heat transfer coefficients of the titanium horizontal plain tube are lower than those of the copper plain tube by $8.2\%$. The boiling heat transfer coefficients of the low finned tube are averagely higher than those of the plain tubes by $34\%$. The average deviation of the Slipcevic correlation from the present data for the low finned tube is $20\%$.

Development of Pool Boiling Heat Transfer Correlation for Hydrocarbon Refrigerants (탄화수소계 냉매의 풀비등 열전달 상관식 개발)

  • Park Ki-Jung;Baek In-Cheol;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.247-253
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of hydrocarbon refrigerants are measured from a horizontal smooth tube of 19.0 mm outside diameter. Tested pure refrigerants are Propylene, Propane, Isobutane, Butane and Dimethylether (DME). The pool temperature was maintained at saturation temperature of $7^{\circ}C$ and heat flux was varied from $10kW/m^2$ to $80kW/m^2$ with an interval of $10kW/m^2$. Wall temperatures were measured directly by thermocouple hole of 0.5 mm out-diameter, 152 mm long and inserting ungrounded sheathed thermocouples from the side of the tube. Tested results show that HTCs of Propane, Propylene are 2.5%, 10.4% higher than those of R22 while those of Butane and Isobutane are 55.2%, 44.3% lower than those of R22 respectively. For pure refrigerants, new correlation can be applied to all of CFCs, HCFCS, HFCs, as well as hydrocarbons was developed. The mean deviation was 4.6%.

EFFECTS OF GEOMETRIC PARAMETERS ON NUCLEATE POOL BOILING OF SATURATED WATER IN VERTICAL ANNULI

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.271-278
    • /
    • 2009
  • Nucleate pool boiling of water in vertical annuli at atmospheric pressure has been studied experimentally and two empirical correlations have been suggested to obtain effects of geometric parameters on heat transfer. Data of the present and the previous tests range over a tube length of 0.50-0.57 m, a diameter of 16.5-34.0 mm, and an annular gap size of 3.7-44.3 mm. Through the analysis, tube bottom confinement (open or closed) has been investigated, as well. The developed correlations predict experimental data within a ${\pm}25%$ error bound. It has been identified that effects of the diameter and the length of heated tubes as well as the annular gap size should be counted into the analyses to estimate heat transfer coefficients accurately.