• Title/Summary/Keyword: Poole-Frenkel emission

Search Result 28, Processing Time 0.028 seconds

Characteristics of Al/$BaTa_2O_6$/GaN MIS structure (Al/$BaTa_2O_6$/GaN MIS 구조의 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.7-10
    • /
    • 2006
  • A GaN-based metal-insulator-semiconductor (MIS) structure has been fabricated by using $BaTa_2O_6$ instead of conventional oxide as insulator gate. The leakage current o) films are in order of $10^{-12}-10^{-13}A/cm^2$ for GaN on $Al_2O_3$(0001) substrate and in order of $10^{-6}-10^{-7}A/cm^2$ for GaN on GaAs(001) substrate. The leakage current of thses films is governed by space-charge-limited current over 45 MV/cm in case of GaN on $Al_2O_3$(0001) substrate and by Poole-Frenkel emission in case of GaN on GaAs(001).

Characterization of Conduction Mechanism in Cu Schottky Contacts to p-type Ge

  • Kim, Se Hyun;Jung, Chan Yeong;Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.324-327
    • /
    • 2014
  • Germanium (Ge) is a promising material for next generation nanoelectronics and multiple junction solar cells. This work investigated the electrical properties in Cu/p-type Ge Schottky diodes, using current-voltage (I-V) measurements. The Schottky barrier heights were 0.66, 0.59, and 0.70 eV from the forward ln(I)-V, Cheung, and Norde methods, respectively. The ideality factors were 1.92 and 1.78 from the forward ln(I)-V method and Cheung method, respectively. Such high ideality factor could be associated with the presence of an interfacial layer and interface states at the Cu/p-Ge interface. The reverse-biased current transport was dominated by the Poole-Frenkel emission rather than the Schottky emission.

Electrical Characteristics and Leakage Current Mechanism of High Temperature Poly-Si Thin Film Transistors (고온 다결정 실리콘 박막트랜지스터의 전기적 특성과 누설전류 특성)

  • 이현중;이경택;박세근;박우상;김형준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.918-923
    • /
    • 1998
  • Poly-silicon thin film transistors were fabricated on quartz substrates by high temperature processes. Electrical characteristics were measured and compared for 3 transistor structures of Standard Inverted Gate(SIG), Lightly Doped Drain(LDD), and Dual Gate(DG). Leakage currents of DG and LDD TFT's were smaller that od SIG transistor, while ON-current of LDD transistor is much smaller than that of SIG and DG transistors. Temperature dependence of the leakage currents showed that SIG and DG TFT's had thermal generation current at small drian bias and Frenkel-Poole emission current at hight gate and drain biases, respectively. In case of LDD transistor, thermal generation was the dominant mechanism of leakage current at all bias conditions. It was found that the leakage current was closely related to the reduction of the electric field in the drain depletion region.

  • PDF

Study on the electrical properties in the ceramic of (Sr¡¤Ca)Ti${O}_{2}$ system ((Sr.Ca)Ti${O}_{3}$계 세라믹의 전기적 특성에 관한 연구)

  • 최운식;김용주;이준웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.12
    • /
    • pp.1610-1616
    • /
    • 1995
  • The (Sr$_{1-x}$ .Ca$_{x}$)TiO$_{3}$(0.05.leq.x.leq.0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[.deg. C] in a reducing atmosphere (N$_{2}$ gas). After being fired in a reducing atmosphere, metal oxides, CuO, was painted on the both surface of the specimens to diffuse to the grain boundary. They were annealed at 1100[.deg. C] for 2 hours. The 2nd phase formed by thermal diffusing from the surface lead to a very high apparent dielectric constant. The results of the capacitance-valtage measurements indicated that the grain boundary was composed of the continuous insulating layers. The capacitance is almost unchanged below about 20[V], but decreased slowly over 20[V]. The conduction mechanism of the specimens observed in the temperature range of 25~125[.deg. C], and is divided into three regions having different mechanism as the current increased: the region I below 200[V/cm] shows the ohmic conduction. The region II between 200[V/cm] and 2000[V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000[V/cm] is dominated by the tunneling effect.ct.

  • PDF

A study on the dielectric and electrical conduction properties of$(Sr_{1-x}.Ca_x)TiO_3$ grain boundary layer ceramics ($(Sr_{1-x}.Ca_x)TiO_3$입계층 세라믹의 유전 및 전기전도특성에 관한 연구)

  • 최운식;김충혁;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.611-618
    • /
    • 1995
  • The (Sr$_{1-x}$ .Ca$_{x}$)TiO$_{3}$+0.6[mol%]Nb$_{2}$O$_{5}$ (0.05.leq.x.leq.0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[.deg. C] in a reducing atmosphere(N$_{2}$ gas). Metal oxides, CuO, was painted on the both surface of the specimens to diffuse to the grain boundary. They were annealed at 1100 [.deg. C] for 2 hours. The 2nd phase formed by thermal diffusing from the surface lead to a very high apparent dielectric constant. According to increase of the frequency as a functional of temperature, all specimens used in this study showed the dielectric relaxation, and the relaxation frequency was above 106 [Hz], it move to low frequency with increasing resistivity of grain. The specimens showed three kinds of conduction mechanisms in the temperature range 25-125 [.deg. C] as the current increased: the region I below 200 [V/cm] shows the ohmic conduction. The region rt between 200 [V/cm] and 2000 [V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000 [V/cm] is dominated by the tunneling effect.fect.

  • PDF

Electrical Conduction Mechanism in the Insulating TaNx Film (절연성 TaNx 박막의 전기전도 기구)

  • Ryu, Sungyeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2017
  • Insulating $TaN_x$ films were grown by plasma enhanced atomic layer deposition using butylimido tris dimethylamido tantalum and $N_2+H_2$ mixed gas as metalorganic source and reactance gas, respectively. Crossbar devices having a $Pt/TaN_x/Pt$ stack were fabricated and their electrical properties were examined. The crossbar devices exhibited temperature-dependent nonlinear I (current) - V (voltage) characteristics in the temperature range of 90-300 K. Various electrical conduction mechanisms were adopted to understand the governing electrical conduction mechanism in the device. Among them, the PooleFrenkel emission model, which uses a bulk-limited conduction mechanism, may successfully fit with the I - V characteristics of the devices with 5- and 18-nm-thick $TaN_x$ films. Values of ~0.4 eV of trap energy and ~20 of dielectric constant were extracted from the fitting. These results can be well explained by the amorphous micro-structure and point defects, such as oxygen substitution ($O_N$) and interstitial nitrogen ($N_i$) in the $TaN_x$ films, which were revealed by transmission electron microscopy and UV-Visible spectroscopy. The nonlinear conduction characteristics of $TaN_x$ film can make this film useful as a selector device for a crossbar array of a resistive switching random access memory or a synaptic device.

Dielectric property and conduction mechanism of ultrathin zirconium oxide films

  • Chang, J.P.;Lin, Y.S.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.61.1-61
    • /
    • 2003
  • Stoichiometric, uniform, amorphous ZrO$_2$ films with an equivalent oxide thickness of ∼1.5nm and a dielectric constant of ∼18 were deposited by an atomic layer controlled deposition process on silicon for potential application in meta-oxide-semiconductor(MOS) devices. The conduction mechanism is identified as Schottky emission at low electric fields and as Poole-Frenkel emission at high electric fields. the MOS devices showed low leakage current, small hysteresis(〈50mV), and low interface state density(∼2*10e11/cm2eV). Microdiffraction and high-resolution transmission electron microscopy showed a localized monoclinic phase of ${\alpha}$-ZrO$_2$ and an amorphous interfacial ZrSi$\_$x/O$\_$y/ layer which has a correspondign dielectric constant of 11

  • PDF

Electrical Properties of Silicon Nitride Thin Films Formed (ECR 플라즈마에 의해 형성된 실리콘 질화막의 전기적 특성)

  • 구본영;전유찬;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.10
    • /
    • pp.35-41
    • /
    • 1992
  • Ultra-thin silicon nitride films were fabricated with ECR(Electron cyclotron Resonance) nitrogen plasma at room temperature. Film thickness was about 50$\AA$ after nitridation for 1min at microwave power of 1000W, RF power of 500W, and NS12T pressure of ${\times}10^{-3}$ torr. 50$\AA$ fo nitride film was grown within 1 min and no appreciable growth occured thereafter. Dielectric breakdown strength and leakage current density in Al/SiN/Si structure were measured to be about 7-11 MV/cm and ${\times}10^{-10}~5{\times}10^{-10}A/cm^{2}$, respectively. Observed linear relationship in 1n(J/E)-vs-E$^{1/2}$ and no polarity-dependence of the leakage current indicated that the Poole-Frenkel emission is mainly responsible for the conduction in this nitrided silicon films.

  • PDF

Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.143-148
    • /
    • 2009
  • The theoretical current density equations for organic semiconductors was derived according to the internal carrier emission equation based on the diffusion model at the Schottky barrier contact and the mobility equation based on the field dependence model, the so-called "Poole-Frenkel mobility model." The electric field becomes constant because of the absence of a space charge effect in the case of a higher injection barrier height and a lower sample thickness, but there is distribution in the electric field because of the space charge effect in the case of a lower injection barrier height and a higher sample thickness. The transition between the injection- and bulk-limited currents was presented according to the Schottky barrier height and the sample thickness change.

A study on the off-current mechanism of poly-Si thin film transistors fabricated at low temperature (저온 제작 다결정 실리콘 박막 트랜지스터의 off-current메카니즘에 관한 연구)

  • Chin, Gyo-Won;Kim, Jin;Lee, Jin-Min;Kim, Dong-Jin;Cho, Bong-Hee;Kim, Young-Ho
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1001-1007
    • /
    • 1996
  • The conduction mechanisms of the off-current in low temperature (.leq. >$600^{\circ}C$) processed polycrystalline silicon thin film transistors (LTP poly-Si TFT'S) have been systematically studied. Especially, the temperature and bias dependence of the off-current between hydrogenated and nonhydrogenated poly-Si TFT's were investigated and compared. The off-current of nonhydrogenated poly-Si TF's is because of a resistive current at low gate and drain voltage, thermally activated current at high gate and low drain voltage, and Poole-Frenkel emission current in the depletion region near the drain at high gate and drain voltage. After hydrogenation it has shown that the off -current mechanism is caused mainly by thermal activation and that the field-induced current component is suppressed.

  • PDF