• Title/Summary/Keyword: Porcine Genome

Search Result 87, Processing Time 0.03 seconds

In silico Analysis of PERVs Based on the Porcine Genomic Sequence Information (돼지 유전체 염기서열을 이용한 내인성 리트로 바이러스 분석에 관한 연구)

  • Yu, Seong-Lan;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.159-165
    • /
    • 2009
  • This study was conducted to identify the PERV (Porcine Endogenous Retrovirus) integration sites and their characterizations using the porcine genomic sequence information. Total 114 Mb (4.2%) sequence of the 2.7 Gb pig genome was investigated for the PERV sequences. As the results, 8 PERV sequences were identified and their genomic structures were deduced from the BLAST searches against previously known PERV genes. Seven PERVs have internal deletions in the protein coding region and they will not be functional. The other one also has internal deletions in the gag and env genes, indicating this PERV is also defective. Even though we could not identify the functional PERVs in this study, the results presented here can be used for the fundamental research materials for controlling PERV infections in relation to xenotransplantation using porcine organs and tissues.

  • PDF

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

Production of homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts

  • Lee, Sanghoon;Jung, Min Hee;Oh, Hyun Ju;Koo, Ok Jae;Park, Se Chang;Lee, Byeong Chun
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.179-183
    • /
    • 2016
  • Even though klotho deficiency in mice exhibits multiple aging-like phenotypes, studies using large animal models such as pigs, which have many similarities to humans, have been limited due to the absence of cell lines or animal models. The objective of this study was to generate homozygous klotho knockout porcine cell lines and cloned embryos. A CRISPR sgRNA specific for the klotho gene was designed and sgRNA (targeting exon 3 of klotho) and Cas9 RNPs were transfected into porcine fibroblasts. The transfected fibroblasts were then used for single cell colony formation and 9 single cell-derived colonies were established. In a T7 endonuclease I mutation assay, 5 colonies (#3, #4, #5, #7 and #9) were confirmed as mutated. These 5 colonies were subsequently analyzed by deep sequencing for determination of homozygous mutated colonies and 4 (#3, #4, #5 and #9) from 5 colonies contained homozygous modifications. Somatic cell nuclear transfer was performed to generate homozygous klotho knockout cloned embryos by using one homozygous mutation colony (#9); the cleavage and blastocyst formation rates were 72.0% and 8.3%, respectively. Two cloned embryos derived from a homozygous klotho knockout cell line (#9) were subjected to deep sequencing and they showed the same mutation pattern as the donor cell line. In conclusion, we produced homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts.

Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System

  • Koo, Ok Jae;Park, Sol Ji;Lee, Choongil;Kang, Jung Taek;Kim, Sujin;Moon, Joon Ho;Choi, Ji Yei;Kim, Hyojin;Jang, Goo;Kim, Jin-Soo;Kim, Seokjoong;Lee, Byeong-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.324-329
    • /
    • 2014
  • To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells ($RFP^+/eGFP^+$) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

Global DNA Methylation of Porcine Embryos during Preimplantation Development

  • Yeo, S.E.;Kang, Y.K.;Koo, D.B.;Han, J.S.;Yu, K.;Kim, C.H.;Park, H.;Chang, W.K.;Lee, K.K.;Han, Y.M.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • DNA methylation at CpG sites, which is a epigenetic modification, is associated with gene expression without change of DNA sequences. During early mouse embryogenesis, dynamic changes of DNA methylation occur. In this study, DNA methylation patterns of porcine embryos produced in vivo and in vitro were examined at various developmental stages by the immunocytochemical staining method. Interestingly, active demethylation was not observed on the paternal pronucleus of porcine zygotes. However, differences were detected in the passive demethylation process between in vivo and in vitro embryos. There was no change in the DNA methylation state until the blastocyst stage of in vivo embryos, whereas partial demethylation was observed in several blastomeres from a 4 cell stage to a morula stage of in vitro embryos. The whole genome of inner cell mass (ICM) and trophectoderm (TE) cells in porcine blastocysts were evenly methylated without de novo methylation. Our findings demonstrate that genome-wide demethylation does not occur in pig embryos during preimplantation development unlike murine and bovine embryos. It indicates that the machinery regulating epigenetic reprogramming may be different between species.

Porcine circovirus: detection of antibodies and virus antigen in Chungbdk area (Porcine circovirus에 대한 항체가 조사 및 바이러스 항원 확인)

  • 강신석;박재명;이종진;류재윤;최해연
    • Korean Journal of Veterinary Service
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • Porcine circoviruses(PCV) are the smallest nonenveloped DNA viruses containing a unique single-stranded circular genome. No recognized link was found between PCV infection of pig and disease. But the PCV consistently identified from postweaning multisystemic wasting syndrome(PMWS) and researches indicate that there are strong relationships between PCV and PMWS. Clinical signs were emaciation, dyspnea, high fever with normal appetite. Necropsy findings showed respiratory disease complex lesion and lymph node anomalities. An indirect-immunofluorescent antibody procedure was used to assay swine sera for the presence of PCV atibodies. Antibodies against PCV were found in an average of 20% of the samples tested. The PCV DNA was amplified from lymph nodes collected from pigs. PCV specific primers were successfully amplified PCV DNAs. Further studies are needed to determine the possible role this virus might have in disease.

  • PDF

Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos

  • Oqani, Reza K.;Zhang, Jin Yu;Lee, Min-Gu;Diao, Yun Fei;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.789-793
    • /
    • 2012
  • Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, ${\alpha}$-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.

Characterization and functional inferences of a genome-wide DNA methylation profile in the loin (longissimus dorsi) muscle of swine

  • Kim, Woonsu;Park, Hyesun;Seo, Kang-Seok;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.3-12
    • /
    • 2018
  • Objective: DNA methylation plays a major role in regulating the expression of genes related to traits of economic interest (e.g., weight gain) in livestock animals. This study characterized and investigated the functional inferences of genome-wide DNA methylome in the loin (longissimus dorsi) muscle (LDM) of swine. Methods: A total of 8.99 Gb methylated DNA immunoprecipitation sequence data were obtained from LDM samples of eight Duroc pigs (four pairs of littermates). The reference pig genome was annotated with 78.5% of the raw reads. A total of 33,506 putative methylated regions (PMR) were identified from methylated regions that overlapped at least two samples. Results: Of these, only 3.1% were commonly observed in all eight samples. DNA methylation patterns between two littermates were as diverse as between unrelated individuals (p = 0.47), indicating that maternal genetic effects have little influence on the variation in DNA methylation of porcine LDM. The highest density of PMR was observed on chromosome 10. A major proportion (47.7%) of PMR was present in the repeat regions, followed by introns (21.5%). The highest conservation of PMR was found in CpG islands (12.1%). These results show an important role for DNA methylation in species- and tissue-specific regulation of gene expression. PMR were also significantly related to muscular cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism. Conclusion: This study indicated the biased distribution and functional role of DNA methylation in gene expression of porcine LDM. DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism (e.g., insulin signaling pathways). Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.

Temporal Expression of RNA Polymerase II in Porcine Oocytes and Embryos

  • Oqani, Reza;Lee, Min Gu;Tao, Lin;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.237-241
    • /
    • 2012
  • Embryonic genome activation (EGA) is the first major transition that occurs after fertilization, and entails a dramatic reprogramming of gene expression that is essential for continued development. Although it has been suggested that EGA in porcine embryos starts at the four-cell stage, recent evidence indicates that EGA may commence even earlier; however, the molecular details of EGA remain incompletely understood. The RNA polymerase II of eukaryotes transcribes mRNAs and most small nuclear RNAs. The largest subunit of RNA polymerase II can become phosphorylated in the C-terminal domain. The unphosphorylated form of the RNA polymerase II largest subunit C-terminal domain (IIa) plays a role in initiation of transcription, and the phosphorylated form (IIo) is required for transcriptional elongation and mRNA splicing. In the present study, we explored the nuclear translocation, nuclear localization, and phosphorylation dynamics of the RNA polymerase II C-terminal domain in immature pig oocytes, mature oocytes, two-, four-, and eight-cell embryos, and the morula and blastocyst. To this end, we used antibodies specific for the IIa and IIo forms of RNA polymerase II to stain the proteins. Unphosphorylated RNA polymerase II stained strongly in the nuclei of germinal vesicle oocytes, whereas the phosphorylated form of the enzyme was confined to the chromatin of prophase I oocytes. After fertilization, both unphosphorylated and phosphorylated RNA polymerase II began to accumulate in the nuclei of early stage one-cell embryos, and this pattern was maintained through to the blastocyst stage. The results suggest that both porcine oocytes and early embryos are transcriptionally competent, and that transcription of embryonic genes during the first three cell cycles parallels expression of phosphorylated RNA polymerase II.