• Title/Summary/Keyword: Porewater pressure

Search Result 48, Processing Time 0.023 seconds

Distribution of Excess Porepressure caused by PCPT into OC clay

  • Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.312-333
    • /
    • 2006
  • This paper presents the results of an analysis of the excess porewater pressure distribution due to piezocone penetration in overconsolidated clays. From piezocone test results for moderately and heavily overconsolidated clays, it was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically to the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. The equation developed in this study based on the modified Cam clay model and the cylindrical cavity expansion theory, which take into consideration the effects of the strain rate and stress anisotropy, provide a good prediction of the initial porewater pressure at the piezocone location. The method of predicting the spatial distribution of excess porewater pressure proposed in this study is based on a linearly increasing ${\Delta}u_{shear}$. In the shear zone and a logarithmically decreasing ${\Delta}u_{oct}$, and is verified by comparing with the excess porewater pressure measured in overconsolidated specimens at the calibration chamber.

  • PDF

A Change of Porewater Pressure under Particle Crushing of Carbonate Sand of Sabkha Layer (Sabkha층 탄산질 모래의 입자파쇄에 따른 간극수압 변화)

  • Kim, Seok-Ju;Yi, Chang-Tok;Ji, Won-Baek;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.19-32
    • /
    • 2014
  • Carbonate sand of Sabkha layer in the middle east was made of deposition of shell fragments and it consisted of porous particles containing inner void. Generally, at yield stress the soil structure begins to break down, so the porewater pressure and the settlement are increased rapidly. In carbonate sand, unlike quartz sand if particle crushing happens, the inner voids are exposed and porewater pressure can be decreased under yield stress. Porewater pressure can be determined as the sum of excess porewater pressure due to increase of relative density, inner void expose of particle under particle crushing stress and rearrangement of crushed particle fragments. The porewater pressure can be negative value in case of greater amount of inner void expose, so if particle crushing is bigger, the porewater pressure value is smaller. The negative value zone of porewater pressure from triaxial test result means particle crushing effect is bigger than outer void decrease effect and the particle crushing effect dominant zone size was 1.50∼3.46% from triaxial test result of Sabkha layer.

Excess Pore Pressure Induced by Cone Penetration in OC Clay (콘관입으로 인한 과압밀점토의 과잉간극수압의 분포)

  • Kim, Tai-Jun;Kim, Sang-In;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.75-87
    • /
    • 2006
  • A series of calibration chamber tests are performed to investigate the spatial distribution of the excess porewater pressure due to piezocone penetration into overconsolidated clays. It was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically, approaching zero at the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. Based on the modified Cam clay model and the cylindrical cavity expansion theory, the expressions to predict the Initial porewater pressure at the piezocone were developed, considering the effects of the strain rate and stress anisotropy. The method of predicting the spatial distribution of excess porewater pressure proposed in this study was verified by comparing it with the porewater pressure measured in overconsolidated specimens in the calibration chamber.

Assessing the Stability of Fill Dams by Relationship between Water Level and Porewater Pressure (저수위-간극수압의 상관관계를 통한 필댐 안정성 평가)

  • Kang, Gichun;Kim, Donghwan;Yoon, Sukmin;Jang, Bong Seok;Kim, Jiseong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.5-15
    • /
    • 2020
  • This study deals with the use of porewater pressure transducers to evaluate the stability of a fill dam through the correlation between the porewater pressure and water level. As a result of performing principal component analysis on a total of eight porewater pressure transducers installed in the fill dam, they were distributed into three groups. It was found to be distributed as internal, external, and top based on seepage line in the dam body. The correlation coefficient between porewater pressures and water level in group A located inside the seepage line indicated 0.94 to 1.00 and they are showing a strong positive linear relationships. It indicates that maintenance of the dam is required by the porewater pressure transducers of the group A. In addition, a linear regression analysis was performed with the determination coefficients of the group A of 0.89 to 0.99. It was found that the pore water pressure can be predicted and the stability of the dam can be evaluated by comparing it with the currently measured values when the water level is fixed as an explanatory variable.

The Effect of Flow Rate on the Process of Immiscible Displacement in Porous Media (다공성 매체 내 비혼성 대체 과정에서 주입 유량이 거동 양상에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • A series of experiments using transparent micromodels with an artificial pore network etched on glass plates was performed to investigate the effects of flow rate on the migration and distribution of resident wetting porewater (deionized water) and injecting non-wetting fluid (n-hexane). Multicolored images transformed from real RGB images were used to distinguish n-hexane from porewater and pore structure. Hexane flooding followed by immiscible displacement with porewater, migration through capillary fingering, preferential flow and bypassing were observed during injection experiments. The areal displacement efficiency increases as the injection of n-hexane continues until the equilibrium reaches. Experimental results showed that the areal displacement efficiency at equilibrium increases as the flow rate increases. Close observation reveals that preferential flowpaths through larger pore bodies and throats and clusters of entrapped porewater were frequently created at lower flow rate. At higher flow rate, randomly oriented forward and lateral flowpaths of n-hexane displaces more porewater at an efficiency close to stable displacement. It may resulted from that the pore pressure of n-hexane, at higher flow rate, increases fast enough to overcome capillary pressure acting on smaller pore throats as well larger ones. Experimental results in this study may provide fundamental information on migration and distribution of immiscible fluids in subsurface porous media.

Pore-scale Investigation on Displacement of Porewater by Supercritical CO2 Injection Using a Micromodel (초임계상 이산화탄소 주입으로 인한 공극수 대체에 관한 공극 규모의 마이크로모델 연구)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.35-48
    • /
    • 2016
  • A micromodel was applied to estimate the effects of geological conditions and injection methods on displacement of resident porewater by injecting scCO2 in the pore scale. Binary images from image analysis were used to distinguish scCO2-filled-pores from other pore structure. CO2 flooding followed by porewater displacement, fingering migration, preferential flow and bypassing were observed during scCO2 injection experiments. Effects of pressure, temperature, salinity, flow rate, and injection methods on storage efficiency in micromodels were represented and examined in terms of areal displacement efficiency. The measurements revealed that the areal displacement efficiency at equilibrium decreases as the salinity increases, whereas it increases as the pressure and temperature increases. It may result from that the overburden pressure and porewater salinity can affect the CO2 solubility in water and the hydrophilicity of silica surfaces, while the neighboring temperature has a significant effect on viscosity of scCO2. Increased flow rate could create more preferential flow paths and decrease the areal displacement efficiency. Compared to the continuous injection of scCO2, the pulse-type injection reduced the probability for occurrence of fingering, subsequently preferential flow paths, and recorded higher areal displacement efficiency. More detailed explanation may need further studies based on closer experimental observations.

A Study of Consolidation property on Soft ground Using Piezocone (피에조콘을 이용한 연약지반의 압밀특성에 관한 연구)

  • 김봉문;박성재;정경환;김찬홍;이길환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.463-468
    • /
    • 2002
  • Based on the results obtain from the investigation of Nak-Dong River District, it was classified as very thick, soft soil deposit. Furthermore, during the construction of structures large settlements are expected. Since large settlement affects the structures life, it is very important to accurately determine the consolidation of soil based on the obtained results. In this study piezocone test and laboratory test were performed to determine the consoildtion properties of Nak-Dong River District Pusan, Gyeong-Nam province. Degree of consoildation and the coefficient of consoildation obtained from the data of piezocone test and the results of the Oedometer test were compared and analyzed. Using the results the porewater pressure coefficient($B_q$) was obtained and the relationship with the Plasticity Index was also determined. From the results of this study the effects of the degree of consolidation and consolidation coefficient, and the porewater pressure coefficient and the Plasticity Index was determined.

  • PDF

피에조 콘 소산시험을 이용한 압밀계수 추정시 이론해의 선택 및 현장지반의 압밀도 평가

  • 이승래;김영상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.37-46
    • /
    • 1998
  • Several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation by biezocone excess pore water dissipation test in soft clay deposits. However, depending on the assumptions and analytical techniques, the estimated coefficient of consolidation could be in a considerably wide range even for a specific degree of consolidation. These solutions are obtained from an initial excess porewater pressure distribution which can be determined from. either the cavity expansion theory or the strain path method. The 야ssipation of the initial excess porelvater pressure has been usally simulated by means of linear-uncoupled consolidation analysis and then the dissipation curve is normalized by the initial excess porewater pressure for easy use. However. since there is no guidelines or rules on which method gives the best solution for obtaining the coefficient of consolidation from the dissipation curve, the final selection was only based on engineer's extrience and Judgements. Thus, such an arbitrary selection might be inappropriate for a specific site to characterize the consolidation behavior. In this paper, we reviewed various theoretical time factors and, based on this consideration, we mentioned needs for researches in selecting a specific solution that is compatible for Korean clays. Also we listed some source of errors that can be encountered in the procedure of dissipation analysis.

  • PDF

Development and Application of Micromodel for Visualization of Supercritical CO2 Migration in Pore-scale (공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2015
  • Despite significant effects on macroscopic migration and distribution of CO2 injected during geological sequestration, only limited information is available on wettability in microscopic scCO2-brine-mineral systems due to difficulties in pore-scale observation. In this study, a micromodel had been developed to improve our understanding of how scCO2 flooding and residual characteristics of porewater are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of glass beads and glass plates) in a pressurized chamber provided the opportunity to visualize scCO2 spreading and porewater displacement. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through an imaging system. Measurement of contact angles of residual porewater in micromodels were conducted to estimate wettability in a scCO2-water-glass bead system. The measurement revealed that the brine-3M NaCl solution-is a wetting fluid and the surface of glass beads is water-wet. It is also found that the contact angle at equilibrium decreases as the pressure decreases, whereas it increases as the salinity increases. Such changes in wettability may significantly affect the patterns of scCO2 migration and porewater residence during the process of CO2 injection into a saline aquifer at high pressures.

Dissolved Methane Measurements in Seawater and Sediment Porewater Using Membrane Inlet Mass Spectrometer (MIMS) System (Membrane Inlet Mass Spectrometer (MIMS) 시스템을 이용한 해수 및 퇴적물 공극수내 용존 메탄의 측정)

  • An, Soon-Mo;Kwon, Ji-Nam;Lim, Jea-Hyun;Park, Yun-Jung;Kang, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2007
  • Membrane inlet mass spectrometer (MIMS) has been used to accurately quantify dissolved gases in liquid samples. In this study, the MIMS system was applied to measure dissolved methane in seawater and sediment porewater. To evaluate the accuracy of the measurement, liquid samples saturated with different methane partial pressure were prepared and the methane concentrations were quantified with the MIMS system. The measured values correspond well with the expected values calculated from solubility constants. The standard error of the measurements were $0.13{\sim}0.9%$ of the mean values. The distribution of dissolved methane concentration in seawater of the South Sea of Korea revealed that the physical parameters primarily control the methane concentration in sea water. The MIMS system was effective to resolve the small dissolved methane difference among water masses. The probe type inlet in MIMS system was proven to be effective to measure porewater methane concentration.