• Title/Summary/Keyword: Porous Model

Search Result 734, Processing Time 0.027 seconds

ANALYSIS OF FORGING LIMIT FOR SINTERED POROUS METALS (다공성 소결금속의 단조한계해석)

  • 한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.64-73
    • /
    • 1995
  • The forging limit curves of sintered porous metals have been calculated, in terms of the two principal strains, by the Lee-Kuhn initial imperfection model. The various yield functions for porous metal have been applied to the initial imperfection model. When the value of initial imperfection ratio equals the value of initial relative density of the sintered porous metals, the calculation values are in good agreement with the measured data. The slopes of the forging limit curves are about 0.5 as in the case of non-porous metals.

A Numerical Study on Propagation Characteristics of Dam-break Wave through a Porous Structure (다공성 구조물을 통과하는 댐 붕괴파의 전파특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.11-24
    • /
    • 2014
  • In this study, the characteristics of the propagation of dam-break wave through a porous structure in a water tank is numerically analyzed by using the three-dimensional numerical model (ANSYS CFX model). As results of comparison between the existing measured and simulated water depth distributions in and around a porous structure, the agreement is relatively well satisfied. Moreover, for the case of the presence in part of a porous structure in a water tank, the three-dimensional flow structure is numerically analyzed In general, compared with in the area with a porous structure, the abrupt variation of water depth occurs in the area without a porous structure. It is shown that the porous structure can play a role to decrease the abrupt variation of water depth.

A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model (비정수압 수치모형을 이용한 다공성 구조물의 유동에 관한 수치적 연구)

  • Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-122
    • /
    • 2018
  • This paper introduces a non-hydrostatic wave model SWASH for simulating wave interactions with porous structures. This model calculates the flow in porous media based on volume-averaged Reynolds-averaged Navier-Stokes equations (VARANS) in ${\sigma}$-coordinate. The empirical coefficients of resistance used to account for the flow in a porous media often need to be measured or calibrated. In this study, the empirical resistance coefficients used in the model are calibrated and validated using laboratory experiments, involving dam-break flow through porous media, and solitary wave interactions with a porous structure. It is shown that the agreement between experimental and numerical results is generally satisfactory. It is also confirmed that non-hydrodynamic model, SWASH, is computationally much more efficient than the three-dimensional porous flow models based on VOF approach.

NUMERICAL INVESTIGATION ON STATIC STIFFNESS CHARACTERISTICS OF POROUS AIR BEARING CONSIDERING ROUGHNESS EFFECTS (조도효과를 고려한 다공질 공기베어링의 정강성 특성에 관한 수치해석 연구)

  • Gwon, H.R.;Lee, S.H.;Lee, J.E.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.62-67
    • /
    • 2008
  • This study aims to investigate numerically the static stiffness characteristics of porous air bearing and to estimate appropriate permeability values of porous medium. In particular, a new roughness model is proposed and implemented into the commercial CFD code (FLUENT Ver. 6.2) by using C language based user subroutine. The predicted results are extensively compared with experimental data. The roughness model is also validated through comparison with the results from open literature. It is found that the predictions for static stiffness are in good agreement with experimental data. Therefore, the suggested model based on the roughness Reynolds number can be used in studying the stiffness characteristics of porous air bearing effectively. In addition, numerical simulations of various diameter size and conditions are conducted. According the results, it is expected that the static stiffness of porous air bearing has the non-linear characteristics.

THE TRANSPORT OF NUCLEAR CONTAMINATION IN FRACTURED POROUS MEDIA

  • Jim-Douglas, Jr.;Anna M.Spagnuolo
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.723-761
    • /
    • 2001
  • The objects of this paper are to formulated a model for the transport of a chain of radioactive waste products in a fractured porous medium, to devise an effective and efficient numerical method for approximating the solution of the model, and to demonstrated the convergence of the numerical method. The formulation begins from a model in an unfractured (single porosity) medium, passes through a double porosity model in a fractured medium, and ends with a modified single porosity model that takes the relevant time scales of the flow and the nuclear decay.

  • PDF

Anti-slosh effect of a horizontal porous baffle in a swaying/rolling rectangular tank: Analytical and experimental approaches

  • George, Arun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.833-847
    • /
    • 2021
  • The horizontal porous baffle and its effect as an anti-slosh device have been investigated intensively in a swaying and rolling rectangular tank. To accurately assess the level at which porous baffles reduce liquid sloshing, the Matched Eigenfunction Expansion Method (MEEM) has been utilized as an analytical tool. The velocity potentials in the horizontal baffle-covered fluid region are expressed by the sum of the homogeneous and particular solutions to avoid solving the complex dispersion equation. By applying an equivalent linearized quadratic loss model, the nonlinear algebraic equation is derived and solved by implementing the Newton-Raphson iterative scheme. To prove the validity of the present theoretical model, a series of experiments have been conducted with different centered horizontal porous baffles with varying porosities and submerged depths in a swaying and rolling rectangular tank. Reasonably good agreements are obtained regarding the analytical solutions and the experiment's findings. The influence of porosity, submerged depth, and length of a centered horizontal porous baffle on anti-slosh performance have been analyzed, especially at resonance modes. The developed predictive tool can potentially provide guidelines for optimal design of the horizontal porous baffle.

Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model (준선형 수치모델을 이용한 투과성 소파장치의 반사율)

  • Ko, Chang-hyun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In present study, we suggested the quasi-linear model that linearizes the quadratic drag representing the energy loss across the porous plate. The quasi-linear model was solved by Boundary Element Method (BEM) for development of the porous wave absorber suitable for 2-D wave tank. The drag coefficient at the porous plate was newly obtained through comparison of experimental results. It is found that the porous wave absorber with porosity 0.1, submergence depth d/h = 0.1, and inclined angle $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$ shows the effective wave absorption. Using the developed quasi-linear numerical model, the optimal design of various types of a porous wave absorber will be applied.

Analysis of Calculation Model for Specific Air-water Interface Area in Unsaturated Porous Media (불포화 다공성 매질체의 공기-물 경계면 비표면적 계산모델 분석)

  • Kim, Min-Kyu;Kim, Song-Bae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.83-93
    • /
    • 2006
  • In unsaturated porous media, the air-water interface (AWI) plays an important role in removing of biocolloids such as bacteria, viruses, and protozoan (oo)cysts. In this study, four models related to calculation of specific AWI area are analyzed to determine the appropriate model, and the selected models are verified using the previously reported experimental data. The results indicate that the modified model from Niemet et al. (2002) is the most appropriate tool for calculating the specific AWI area using the van Genuchten (1980) parameters obtained from the water retention curve. Hence, it is expected that this model could be used to quantitatively determine the attachment of biocolloids to AWI in the transport modeling of biocolloids in unsaturated porous media.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

PTV velocity field measurements of flow around a triangular prism located behind a porous fence (다공성 방풍벽 뒤에 놓인 삼각 프리즘 주위 유동의 PTV 속도장 측정)

  • Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.708-715
    • /
    • 1998
  • The shelter effect of a porous wind fence on a triangular prism was experimentally investigated in a circulating water channel. A porous fence of porosity .epsilon.=38.5% was installed in front of the prism model. The fence and prism model were embedded in a turbulent boundary layer. The instantaneous velocity fields around the fence and prism model were measured by using the instantaneous velocity fields around the fence and prism model were measured by using the 2-frame PTV(Particle Tracking Velocimetry) system. By installing the fence in front of the prism, the recirculation flow region decreases compared with that of no fence case. The porous fence also decreases the mean velocity, turbulent intensity and turbulent kinetic energy around the prism. Especially, at the top of the prism, the turbulent kinetic energy is about half of that without the fence.