• Title/Summary/Keyword: Posterior Preference Articulation Approach

Search Result 4, Processing Time 0.023 seconds

An Iterative Posterior Preference Articulation Approach to Dual Response Surface Optimization (쌍대반응표면최적화를 위한 반복적 선호도사후제시법)

  • Jeong, In-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.4
    • /
    • pp.481-496
    • /
    • 2012
  • Purpose: This paper aims at improving inefficiency of an existing posterior preference articulation method proposed for dual response surface optimization. The method generates a set of non-dominated solutions and then allows a decision maker (DM) to select the best solution among them through an interval selection strategy. Methods: This paper proposes an iterative posterior preference articulation method, which repeatedly generates the predetermined number of non-dominated solutions in an interval which becomes gradually narrower over rounds. Results: The existing method generates a good number of non-dominated solutions not used in the DM's selection process, while the proposed method generates the minimal number of non-dominated solutions necessitated in the selection process. Conclusion: The proposed method enables a satisfactory compromise solution to be achieved with minimal cognitive burden of the DM as well as with light computation load in generating non-dominated solutions.

A Posterior Preference Articulation Method to Dual-Response Surface Optimization: Selection of the Most Preferred Solution Using TOPSIS (쌍대반응표면최적화를 위한 사후선호도반영법: TOPSIS를 활용한 최고선호해 선택)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Response surface methodology (RSM) is one of popular tools to support a systematic improvement of quality of design in the product and process development stages. It consists of statistical modeling and optimization tools. RSM can be viewed as a knowledge management tool in that it systemizes knowledge about a manufacturing process through a big data analysis on products and processes. The conventional RSM aims to optimize the mean of a response, whereas dual-response surface optimization (DRSO), a special case of RSM, considers not only the mean of a response but also its variability or standard deviation for optimization. Recently, a posterior preference articulation approach receives attention in the DRSO literature. The posterior approach first seeks all (or most) of the nondominated solutions with no articulation of a decision maker (DM)'s preference. The DM then selects the best one from the set of nondominated solutions a posteriori. This method has a strength that the DM can understand the trade-off between the mean and standard deviation well by looking around the nondominated solutions. A posterior method has been proposed for DRSO. It employs an interval selection strategy for the selection step. This strategy has a limitation increasing inefficiency and complexity due to too many iterations when handling a great number (e.g., thousands ~ tens of thousands) of nondominated solutions. In this paper, a TOPSIS-based method is proposed to support a simple and efficient selection of the most preferred solution. The proposed method is illustrated through a typical DRSO problem and compared with the existing posterior method.

A Posterior Preference Articulation Method to the Weighted Mean Squared Error Minimization Approach in Multi-Response Surface Optimization (다중반응표면 최적화에서 가중평균제곱오차 최소화법을 위한 선호도사후제시법)

  • Jeong, In-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7061-7070
    • /
    • 2015
  • Multi-Response Surface Optimization aims at finding the optimal setting of input variables considering multiple responses simultaneously. The Weighted Mean Squared Error (WMSE) minimization approach, which imposes a different weight on the two components of mean squared error, squared bias and variance, first obtains WMSE for each response and then minimizes all the WMSEs at once. Most of the methods proposed for the WMSE minimization approach to date are classified into the prior preference articulation approach, which requires that a decision maker (DM) provides his/her preference information a priori. However, it is quite difficult for the DM to provide such information in advance, because he/she cannot experience the relationships or conflicts among the responses. To overcome this limitation, this paper proposes a posterior preference articulation method to the WMSE minimization approach. The proposed method first generates all (or most) of the nondominated solutions without the DM's preference information. Then, the DM selects the best one from the set of nondominated solutions a posteriori. Its advantage is that it provides an opportunity for the DM to understand the tradeoffs in the entire set of nondominated solutions and effectively obtains the most preferred solution suitable for his/her preference structure.

Dual Response Surface Optimization using Multiple Objective Genetic Algorithms (다목적 유전 알고리즘을 이용한 쌍대반응표면최적화)

  • Lee, Dong-Hee;Kim, Bo-Ra;Yang, Jin-Kyung;Oh, Seon-Hye
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.3
    • /
    • pp.164-175
    • /
    • 2017
  • Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.