• Title/Summary/Keyword: Postulated Pipe Rupture

Search Result 3, Processing Time 0.018 seconds

Structural Integrity Evaluation of Fuel Test Loop Submerged in Water Subjected to Postulated Pipe Rupture

  • Lee, Choon-Yeol;Kwon, Jae-Do;Lee, Yong-Son;Kim, Kil-Soo;Kim, Jun-Yeun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.215-225
    • /
    • 2000
  • The structural integrity of the fuel test loop (FTL) in a Korean experimental reactor is evaluated when the FTL, submerged in a water environment, is subjected to a postulated pipe rupture. The analyses are performed under static and dynamic conditions, imposing the thrust force history at each postulated pipe rupture section. Through analysis the following results are found: l) A double ended guillotine can not be expected based on the toughness of the material, 2) the structural integrity of the chimney surrounding the FTL would not impede the structural integrity by the pipe whip. All analyses are performed by finite element methods.

  • PDF

Evaluation of Blast Wave and Pipe Whip Effects According to High Energy Line Break Locations (고에너지배관 파단위치에 따른 배관휩과 충격파의 영향 평가)

  • Kim, Seung Hyun;Chang, Yoon-Suk;Choi, Choengryul;Kim, Won Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • When a sudden rupture occurs in high energy lines, ejection of inner fluid with high temperature and pressure causes blast wave as well as thrust forces on the ruptured pipe itself. The present study is to examine pipe whip behaviors and blast wave phenomena under postulated pipe break conditions. In this context, typical numerical models were generated by taking a MSL (Main Steam Line) piping, a steam generator and containment building. Subsequently, numerical analyses were carried out by changing break locations; one is pipe whip analyses to assess displacements and stresses of the broken pipe due to the thrust force. The other is blast wave analyses to evaluate the broken pipe due to the blast wave by considering the pipe whip. As a result, the stress value of the steam generator increased by about 7~21% and von Mises stress of steam generator outlet nozzle exceeded the yield strength of the material. In the displacement results, rapid movement of pipe occurred at 0.1 sec due to the blast wave, and the maximum displacement increased by about 2~9%.

Identification of hydrogen flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes

  • Jeon, Joongoo;Kim, Yeon Soo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1939-1950
    • /
    • 2019
  • The MELCOR code useful for a plant-specific hydrogen risk analysis has inevitable limitations in prediction of a turbulent flow of a hydrogen mixture. To investigate the accuracy of the hydrogen risk analysis by the MELCOR code, results for the turbulent gas behavior at pipe rupture accident were compared with CFX results which were verified by the American National Standard Institute (ANSI) model. The postulated accident scenario was selected to be surge line failure induced by station blackout of an Optimized Power Reactor 1000 MWe (OPR1000). When the surge line failure occurred, the flow out of the surgeline was strongly turbulent, from which the MELCOR code predicted that a substantial amount of hydrogen could be released. Nevertheless, the results indicated nonflammable mixtures owing to the high steam concentration released before the failure. On the other hand, the CFX code solving the three-dimensional fluid dynamics by incorporating the turbulence closure model predicted that the flammable area continuously existed at the jet interface even in the rising hydrogen mixtures. In conclusion, this study confirmed that the MELCOR code, which has limitations in turbulence analysis, could underestimate the existence of local combustible gas at pipe rupture accident. This clear comparison between two codes can contribute to establishing a guideline for computational hydrogen risk analysis.