• Title/Summary/Keyword: Potassium tetratitanate

Search Result 11, Processing Time 0.027 seconds

Synthesis of potassium titanate by wet process (습식법에 의한 티탄산칼륨 섬유의 합성)

  • 강대갑;송종택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.278-283
    • /
    • 1995
  • The potassium titanate fibres were synthesized with wet process by the addition of KOH solution to the TiOz gel produced by the reaction between element titanium particles and $H_2O_2$ solution at $50^{\circ}C$. And then they were characterized by XRD, SEM and FT - IR. It was found that potassium titanate fibres were mainly affected by KOH/TiOz mole ratio, synthesis time and aging time in this wet process employed. For $KOH/TiO_2 = 1/1$, synthesizing time 24 hrs, aging time 24 hrs and calcination temperature of TEX>$900^{\circ}C$ for 1 hr, their products were mainly found to be potassium tetratitanate which had thin and long fibres in the range of 10 ~ 20 mm. As the synthesizing time increased and the amount of KOH decreased, potassium tetratitanate was converted into potassium hexatitanate. Also, the length of their fibres became short.

  • PDF

The Effect of Synthetic Heat-treatment Temperatures on the Substitution Behavior of Lithium Ions in Potassium Tetratitanate (합성 열처리온도 변화가 Potassium Tetratitanate의 리튬 이온 치환거동에 미치는 영향)

  • 이재만;윤순길;이상훈;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.955-961
    • /
    • 2000
  • 사티탄산칼륨을 리튬이온 전지의 양극재료로써 사용하고자 할 때 사티탄산칼륨의 합성 열처리 온도가 리튬이온 치환량에 미치는 영향에 대해 조사하였다. 사티탄산칼륨은 $K_2$O와 TiO$_2$의 몰 비를 1 : 3.91로 칭량하여 95$0^{\circ}C$, 100$0^{\circ}C$, 105$0^{\circ}C$에서 각각 합성하였다. 그 후, 사티탄산칼륨의 (Ti$_4$O$_{9}$ )$^{2-}$ 층간에 존재하는 $K^{+}$ 이온을 H$^{+}$ 이온으로 치환하고 이것을 다시 Li$^{+}$ 이온으로 치환하였다. 사티탄산칼륨의 합성 열처리 온도가 증가할수록 사티탄산칼륨의 (Ti$_4$O$_{9}$ )$^{2-}$ 층간의 거리가 감소했고 사티탄산칼륨의 길이가 증가했다. 95$0^{\circ}C$에서 열처리된 사티탄산칼륨의 리튬이온 치환량이 가장 많았다. 이는 상대적으로 낮은 합성 열처리 온도에서 사티탄산칼륨의 (Ti$_4$O$_{9}$ )$^{2-}$ 층간의 거리가 넓어져 리튬이온의 층간 이동이 쉬어졌고, 고온에서 열처리되어 길이가 긴 사티탄산칼륨에 비해 저온에서 열처리된 사티탄산칼륨은 길이가 짧아져 리튬이온이 (Ti$_4$O$_{9}$ )$^{2-}$ 층간으로 이동해 가는 거리가 짧아졌으며 아울러 짧은 사티탄산칼륨의 개수가 동일한 무게 당긴 사티탄산칼륨의 개수보다 많으므로 리튬이온의 치환량이 많아진다고 사료된다.

  • PDF

The Synthesis of Fibrous Potassium Hexatitanate Whisker from Natural Rutile Ore by the Calcination Method (금홍석으로부터 소성법에 의한 Potassium Hexatitanate Whisker의 합성)

  • Kwon, Kung-Taek;Lee, Jin-Sik;Oh, Chi-Hoon;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.410-415
    • /
    • 1997
  • Fibrious potassium hexatitanate whisker was produced from the calcination process using a mixture of the natural rutile ore and industrial $K_2CO_3$. Fibrous Potassium titanate was prepared by the following procedures the starting material consisting of $K_2O{\cdot}4.4TiO_2$ was calcined at $1050^{\circ}C$ for 3 hrs. The calcined products obtained under the above condition consisted mainly of potassium hexatitanate with a small admixture of potassium dititanate and potassium tetratitanate. Therefore the single phase of potassium hexatitanate was obtained by heat treatment of $850^{\circ}C$, 3 hrs.

  • PDF

Slow-Cooling Calcination Process to Potassium Tetratitanate and Potassium Hexatitanate Fibers (서냉소성법에 의한 사티탄산칼륨 및 육티탄산칼륨 섬유의 합성)

  • 최진호;한양수;송승완
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.664-670
    • /
    • 1993
  • Potassium tetratitanate (K2Ti4O9) and Potassium hexatitanate (K2Ti6O13) fibers have been prepared by the slow-cooling calcination process in a temperature range from 125$0^{\circ}C$ to 95$0^{\circ}C$ using the K2CO3 and TiO2 as the starting materials. Optimum fiber growth conditions have been also investigated by changing the physical parameters, such as calcination time and temperature, and cooling rate. Relatively long K2Ti4O9 fibers ( 1.2mm) have been grown with quite a high aspect ratio (c/a 500)when the starting material with a nominal composition of K2O and TiO2 with 1:4 was calcined at 115$0^{\circ}C$ for 4h, and then was slowly cooled to 95$0^{\circ}C$ with a rate of 2$0^{\circ}C$/h. In case of a K2O.6TiO2 composition, acicular shaped K2Ti6O13 fibers with 20~300${\mu}{\textrm}{m}$ long and low aspect ratio (c/a 10~15) have been formed irrespective of the coolign rate. The growth condition of fibers have been discussed based upon the phase diagram of K2O-TiOa2.

  • PDF

Synthesis of Lithium Titanate Whisker Using Ion-Exchange of Acid Treatment

  • Um Myeong-Heon;Lee Jin-Sik
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.627-633
    • /
    • 2004
  • Lithium titanate whiske($Li_{x}Ti_{4}O_9$) was prepared by an ion-exchange reaction. To this end, the initial material, potassium tetratitanate ($K_{2}Ti_{4}O_9{\cdot}nH_{2}O$) was prepared by calcination of a mixture of $K_{2}CO_3\;and\;TiO_2$ with a molar ratio of 2.8 at $1050^{\circ}C$ for 3 h, followed by boiling water treatment of the calcined products for 10 h. Fibrous potassium tetratitanate could be transformed into layered hydrous titanium dioxide ($H_{2}Ti_{4}O_9{\cdot}nH_{2}O$) through an exchange of $K^{+}\;with\;H^{+}$ using 0.075 M HCl. Also, lithium titanate whisker was finally prepared as $Li^{+}\;and\;H^{+}$ ions were exchanged by adding 20 mL of a mixture solution of LiOH and $LiNO_3$ to 1g whisker and stirring for $5\~15$ days. The average length and diameter of the $Li_{x}Ti_{4}O_9$ whiskers were $10\~20{\mu}m\;and\;1\~3{\mu}m$, respectively.

Synthesis of Potassium Hexatitanate with Non-Fibrous Shape as a Raw Material for Friction Material in Brake System (자동차 브레이크 마찰재용 비침상형 육티탄산칼륨의 합성 연구)

  • Lee, Jung Ju;Lee, Na-Ri;Pee, Jae-Hwan;Kim, Jong-Young;Kim, Jeong-Joo
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.132-136
    • /
    • 2017
  • We synthesized potassium hexatitanate, ($K_2Ti_6O_{13}$, PT6), with a non-fibrous shape, by acid leaching and subsequent thermal treatment of potassium tetratitanate ($K_2Ti_4O_9$, PT4), with layered crystal structure. By controlling nucleation and growth of PT4 crystals, we obtained splinter-type crystals of PT6 with increased width and reduced thickness. The optimal holding temperature for the layered PT4 was found to be ${\sim}920^{\circ}C$. The length and width of the PT4 crystals were increased when the nucleation and growth time were increased. After a proton exchange reaction using aqueous 0.3 M HCl solution, and subsequent heat treatment at $850^{\circ}C$, the PT4 crystal transformed into splinter-type PT6 crystals. The frictional characteristics of the friction materials show that as the particle size of PT6 increases, the coefficient of friction (COF) and wear amounts of both the friction materials and counter disc increase.

Synthesis of splinter-type and plate-type potassium titanate as reinforcements in brake pad for automobile (스플린터 및 판상형 티탄산칼륨염 합성 및 브레이크 보강재로서의 평가)

  • Kim, Sung-Hun;Kim, Jong-Young;Shim, Wooyoung;Lee, Jung Ju;Kwon, Sung Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.329-337
    • /
    • 2019
  • We synthesized potassium titanates having splinter and plate shape and evaluated frictional and wear properties of brake pad using them as reinforcements in friction materials. For splinter-shaped potassium titanates, potassium tetratitanate (K2O·4TiO2, PT4) with plate shape was prepared, then K ion of the titanate was leached by acid to make potassium hexatitanate (K2O·6TiO2, PT6), which was transformed to splinter-shaped PT6 by thermal treatment at 800℃. Plate-shaped potassium magnesium titanate (K0.8Mg0.4Ti1.6O4, PMT) was prepared by adding Mg in the potassium titanate using KCl as a flux. Using PT6 and PMT as reinforcements in friction materials of brake pad, we evaluated frictional and wear properties using 1/5-scale dynamometer. According to dynamometer test results, both reinforcements shows similar friction coefficient and fade & recovery behavior to conventional material and plate-shaped PMT exhibits higher wear resistance than splinter-shaped PT6.

Synthesis of Potassium Octatitanate Whisker from Natural Rutile Ore using the Ion Exchange Reaction (금홍석으로부터 이온교환에 의한 Potassium Octatitanate Whisker의 합성)

  • Lee, Chul-Tae;Lee, Jin-Sik;Ko, Du-Wan;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.446-453
    • /
    • 1997
  • The initial product was prepared by heating for 3 hrs at $1000^{\circ}C$ using a mixture of the rutile sand and industral $K_2CO_3$ in the molar ratio 2.0. And the intermediate product, fibrous potassium tetratitanate of layer structure, was obtained by the boiling water treatment of 10hrs for initial product using the calcination method. Also $KHTi_4O_9{\cdot}1.1H_2O$ was synthesized by ion exchange reaction through the acid treatment for 30 min at 0.005M HCl solution and then $K_2Ti_8O_{17}$ whisker of $length=10{\mu}m$, $diameter=0.2{\mu}m$ was synthesized by heat treatment at temperature range of $400{\sim}600^{\circ}C$.

  • PDF

Flux Melting Route to 2-and 3-dimensional Fibrous Potassium Titanates, K$_2Ti_{2n}O_{4n+1}$ (n = 2 and 3) (Flux 용융법에 의한 2차원 및 3 차원 구조의 티탄산칼륨 섬유의 합성)

  • Jin-Ho Choy;Yang Su Han;Seung Wan Song
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.765-772
    • /
    • 1993
  • Two-dimensional potassium tetratitanate ($K_2Ti_4O_9$) and three-dimensional potassium hexatitanate ($K_2Ti_6O_{13}$) fibers have been prepared by the combined method consisting of the flux melting (1150$^{\circ}C$)-slow cooling (cooling rate = 5$^{\circ}C$/h) process from the starting raw materials of $K_2CO_3$, and $TiO_2$ with the flux of $K_2MoO_4$. It was found that the fiber growth reaction is strongly dependent upon the mole ratio of flux (F) to raw material (R), which is 7 : 3 (F : R) as for the optimum growth condition. Relatively long fibers (average length ${\thickapprox}$ 4 mm) with a mixture of $K_2Ti_4O_9$ (major) and $K_2Ti_6O_{13}$ (minor) could be obtained when the reaction was carried out for the $K_2MoO_4-$K_2O{\cdot}4TiO_2$ (F : R = 7 : 3) system, but for the $K_2$MoO_4$-$K_2O{\cdot}6TiO_2$ (F : R = 7: 3) one, only the short fibers with ${\thickapprox}$ 2 mm long could be grown as the mixed phase of $K_2Ti_6O_{13}$ and $K_2Ti_4O_9$.

  • PDF