• Title/Summary/Keyword: Potential biomarkers

Search Result 365, Processing Time 0.028 seconds

Next generation sequencing-based salivary biomarkers in oral squamous cell carcinoma

  • Sodnom-Ish, Buyanbileg;Eo, Mi Young;Myoung, Hoon;Lee, Jong Ho;Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.1
    • /
    • pp.3-12
    • /
    • 2022
  • Selection of potential disease-specific biomarkers from saliva or epithelial tissues through next generation sequencing (NGS)-based protein studies has recently become possible. The early diagnosis of oral squamous cell carcinoma (OSCC) has been difficult, if not impossible, until now due to the lack of an effective OSCC biomarker and efficient molecular validation method. The aim of this study was to summarize the advances in the application of NGS in cancer research and to propose potential proteomic and genomic saliva biomarkers for NGS-based study in OSCC screening and diagnosis programs. We have reviewed four categories including definitions and use of NGS, salivary biomarkers and OSCC, current biomarkers using the NGS-based technique, and potential salivary biomarker candidates in OSCC using NGS.

The Fluorescence Immunoassay of lung Cancer Serum Diomarkers using Quantum dots

  • Kang, Ji-Min;Ahn, Jin-Seok;Kim, Jin-Hoon;Kong, Won-Ho;Park, Keun-Chil;Kim, Won-Seog;Seo, Soo-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.122-128
    • /
    • 2009
  • Cancer serum biomarkers have advanced our ability to more accurately predict tumor classification, prognostic/metastatic potential, and response potential to novel chemotherapies. Serum amyloid A (SAA) and Vascular endothelial growth factor (VEGF) have potential utility as a serum biomarker for lung cancer. Quantum dots, nanometer-sized crystals, have a high quantum yield, sensitivity, and pronounced photostability. The properties of quantum dots can be efficiently applied to the detection of serum biomarkers in immunoassays as fluorescent probe. We used quantum dots as fluorescent probes in immunoassays and attempted to detect serum amyloid A and vascular endothelial growth factor as serum biomarkers of lung cancer. This fluorescence immunoassay based on the properties of quantum dots is applicable to the detection of serum biomarkers for lung cancer. The fluorescence immunoassay with quantum dots should allow the efficient and specific detection of serum amyloid A (SAA) for the possible diagnosis of lung cancer.

Metabolomics Investigation of Cutaneous T Cell Lymphoma Based on UHPLC-QTOF/MS

  • Zhou, Qing-Yuan;Wang, Yue-Lin;Li, Xia;Shen, Xiao-Yan;Li, Ke-Jia;Zheng, Jie;Yu, Yun-Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5417-5421
    • /
    • 2014
  • Objectives: The identification of cutaneous T cell lymphoma (CTCL) biomarkers may serve as a predictor of disease progression and treatment response. The aim of this study was to map potential biomarkers in CTCL plasma. Design and Methods: Plasma metabolic perturbations between CTCL cases and healthy individuals were investigated using metabolomics and ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Results: Principal component analysis (PCA) of the spectra showed clear metabolic changes between the two groups. Thirty six potential biomarkers associated with CTCL were found. Conclusions: Based on PCA, several biomarkers were determined and further identified by LC/MS/MS analysis. All of these could be potential early markers of CTCL. In addition, we established that heparin as a nticoagulant has better pre-treatment results than EDTA with the UHPLC-QTOF/MS appraoch.

Circulating miR-221 and miR-222 as Potential Biomarkers for Screening of Breast Cancer

  • Kim, Jungho;Oh, Sehee;Park, Sunyoung;Ahn, Sungwoo;Choi, Yeonim;Kim, Geehyuk;Kim, Seung Il;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.185-189
    • /
    • 2019
  • Breast cancer is the second most common cancer in women with approximately 522,000 deaths annually worldwide. microRNAs have recently been studied as potential biomarkers that regulate gene expression and are involved in tumorigenesis. Here we evaluated circulating miR-221 and miR-222 as potential biomarkers for breast cancer by quantitative reverse transcription PCR using blood plasma of 30 healthy controls and 30 breast cancer patients. The TNM stage on circulating miR-221 and miR-222 was also investigated. Circulating miR-221 and miR-222 were significantly up-regulated in breast cancer patients compared to those in healthy controls (P < 0.0022 and P = 0.0058, respectively). Furthermore, the relative expression level of circulating miR-221 in patients with stage III breast cancer was higher than in those with stage I and II. Taken together, we have shown circulating miR-221 and miR-222 could be useful biomarkers for the screening of breast cancer patients.

Investigating the Potential of Lipids for Use as Biomarkers for Glioblastoma via an Untargeted Lipidomics Approach

  • Burcak Soylemez;Zekeriya Bulut;Serap Sahin-Bolukbasi
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.2
    • /
    • pp.133-143
    • /
    • 2023
  • Objective : The types and functions of lipids involved in glioblastoma (GB) are not well known. Lipidomics is a new field that examines cellular lipids on a large scale and novel aplication of lipidomics in the biomedical sciences have emerged. This study aimed to investigate the potential of blood lipids for use as biomarkers for the diagnosis of GB via untargated lipidomic approach. Gaining a deeper understanding of lipid metabolism in patients with GB can contribute to the early diagnosis with GB patiens and also development of novel and better therapeutic options. Methods : This study was performed using blood samples collected from 14 patients (eight females and six males) and 14 controls (eight females and six males). Lipids were extracted from blood samples and quantified using phosphorus assay. Lipid profiles of between patients with GB and controls were compared via an untargeted lipidomics approach using 6530 Accurate-Mass Q-TOF LC/MS mass spectrometer. Results : According to the results obtained using the untargeted lipidomics approach, differentially regulated lipid species, including fatty acid (FA), glycerolipid (GL), glycerophospholipid (PG), saccharolipid (SL), sphingolipid (SP), and sterol lipid (ST) were identified between in patients with GB and controls. Conclusion : Differentially regulated lipids were identified in patients with GB, and these lipid species were predicted as potential biomarkers for diagnosis of GB.

Biomarkers of Exposure for Cigarette Smoke (담배연기 노출량 평가 생체지표)

  • Park, Chul-Hoon;Shin, Han-Jae;Lee, Hyeong-Seok;Yoo, Ji-Hye;Sohn, Hyung-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 2009
  • Biomarkers could be critical and useful tools for assessing the biological effects of smoking and detecting differences between potentially reduced exposure product (PREP) and conventional cigarettes. Smoking-related biomarkers can be classified into three categories as biomarkers of exposure, biomarkers of effects, and biomarkers of potential harm. When compared with the biomarkers of effects or harm, the biomarkers of exposure for chemical constituents of cigarette smoke are well established and characterized. In addition, they could offer the important information in understanding how cigarette smoke interacts with biological molecules and causes the disease to human. Therefore, we provide an overview of 6 biomarkers of exposure (Nicotine and nicotine metabolites, Carboxyhaemoglobin, NNAL (4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol) and NNAL - glucuronide, 3-Hydroxypropyl-mercapturic acid, and Monohydroxy-butenyl-mercapturic acids, and Urine mutagenicity) which were validated through extensive research and clinical experience. These reliable biomarkers could help identify the efficacy of PREP by predicting early toxicological effects and lead to improve it.

Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19)

  • Ajay Vijayakumar;Jong-Hoon Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.113-121
    • /
    • 2024
  • Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinaseMB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.

MicroRNAs: Biogenesis, Roles for Carcinogenesis and as Potential Biomarkers for Cancer Diagnosis and Prognosis

  • Kavitha, Nowroji;Vijayarathna, Soundararajan;Jothy, Subramanion Lachumy;Oon, Chern Ein;Chen, Yeng;Kanwar, Jagat Rakesh;Sasidharan, Sreenivasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7489-7497
    • /
    • 2014
  • MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.

MicroRNAs as Novel Biomarkers for the Diagnosis of Alzheimer's Disease and Modern Advancements in the Treatment

  • Gunasekaran, Tamil Iniyan;Ohn, Takbum
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Alzheimer's disease is a common form of dementia occurring among the elderly population and can be identified by symptoms such as cognition impairments, memory loss and neuronal dysfunction. Alzheimer's disease was found to be caused by the deposition of $\beta$-amyloid plaques and neurofibrillary tangles. In addition, mutation in the APP (Amyloid precursor protein), Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) genes were also found to contribute to Alzheimer's disease. Since the potential conformational diagnosis of Alzheimer's disease requires histopathological tests on brain through autopsy, potential early diagnosis still remains challenging. In recent years, several researches have proposed the use of biomarkers for early diagnosis. In cerebrospinal fluid (CSF), $\beta$-amyloid(1-42), phosphorylated-tau and total tau were suggested to be effective biomarkers for Alzheimer's disease diagnosis. However, a single biomarker might not be sufficient for potential diagnosis of Alzheimer's disease. Thus, the use of RNA interference (RNAi) through microRNAs (miRNAs) has been proposed by several researchers for simultaneous analysis of several biomarkers using microarray technology. These miRNA based biomarkers can be analysed from both blood and CSF, but miRNAs from blood are advantageous over CSF as they are non-invasive and simple for collection. Moreover, the RNAi based therapeutics by siRNA (short interference RNA) or shRNA (short hairpin RNA) have also been proposed to be effective in the treatment of Alzheimer's disease. This review describes the promising application of RNAi technology in therapeutics and as a biomarker for both Alzheimer's disease diagnosis and treatment.

Salivary biomarkers in oral squamous cell carcinoma

  • Nguyen, Truc Thi Hoang;Sodnom-Ish, Buyanbileg;Choi, Sung Weon;Jung, Hyo-Il;Cho, Jaewook;Hwang, Inseong;Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.301-312
    • /
    • 2020
  • In disease diagnostics and health surveillance, the use of saliva has potential because its collection is convenient and noninvasive. Over the past two decades, the development of salivary utilization for the early detection of cancer, especially oral cavity and oropharynx cancer has gained the interest of the researcher and clinician. Until recently, the oral cavity and oropharynx cancers are still having a five-year survival rate of 62%, one of the lowest in all major human cancers. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). Despite the ease of accessing the oral cavity in clinical examination, most OSCC lesions are not diagnosed in the early stage, which is suggested to be the main cause of the low survival rate. Many studies have been performed and reported more than 100 potential saliva biomarkers for OSCC. However, there are still obstacles in figuring out the reliable OSCC salivary biomarkers and the clinical application of the early diagnosis protocol. The current review article discusses the emerging issues and is hoped to raise awareness of this topic in both researchers and clinicians. We also suggested the potential salivary biomarkers that are reliable, specific, and sensitive for the early detection of OSCC.