• Title/Summary/Keyword: Power error

Search Result 3,647, Processing Time 0.035 seconds

Effects of Elastic Taping on the Power and Velocity Error of Rectus Femoris after Muscle Fatigue Occurred (탄력성 테이핑이 근 피로를 적용한 넙다리곧은근의 파워오차와 속도오차에 미치는 영향)

  • Yoon, Junggyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Purpose : The purpose of this study was to examine the effects of elastic taping on the power and velocity error of rectus femoris after muscle fatigue occurred. Method : The subjects of this study were 15 healthy students. The Primus RS was used to measure the power and velocity error of rectus femoris after muscle fatigue occurred. The power and velocity error were measured 3 times which are consist of pre-fatigue, after-fatigue and after 24 hours applied elastic tape on rectus femoris. A elastic tape was attached to rectus femoris between the antero inferior iliac spine (AIIS) and the tibia tuberosity. The collected data was analyzed using one-way repeated-measures ANOVA for comparison of the power and velocity error according to the measured time and Pearson test for correlation between the power and velocity error according to the measured time. Level of significance was set at 0.05. Result : No significant differences of the power and velocity error were found between $1^{st}$ and 2nd, 3rd measurements (p>.05). The power and velocity error, after 24 hours, of the applied elastic tape with muscle fatigue was significantly lower than muscle fatigue with no taping(p<.05). No significant correlations were found between the power and velocity error according to the measured time(p>.05). Conclusion : After applying the elastic tape on the rectus femoris, muscle fatigue occurred, which improved proprioception by decreasing movement error. It will be an important intervention to prevent musculoskeletal injuries and to enhance the motor control in exercise.

Power Control for D2D Communication in the Cellular System: The Impact of Channel Estimation Error

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.51-57
    • /
    • 2018
  • In this paper, we investigate the impact of channel estimation error on the D2D power control algorithm. In the previous work, D2D power control algorithm has been proposed under the assumption that the channel between the transmitter and the corresponding receiver is perfectly estimated. In reality, the channel estimation error is more often the case. The first question is that the power control algorithm designed for perfect channel estimation is still valid under the channel estimation error environment ? The second question is, if it is not valid, what could be the possible remedy for the channel estimation error ? In this paper, to answer the first question, we investigate the impact of the channel estimation error on the power control algorithm. We first review the D2D power control algorithm designed for perfect channel estimation. Then, we model the channel estimation error. Finally, we summarize the main results observed from the analysis of the simulation.

Economic Comparison of Wind Power Curtailment and ESS Operation for Mitigating Wind Power Forecasting Error (풍력발전 출력 예측오차 완화를 위한 출력제한운전과 ESS운전의 경제성 비교)

  • Wi, Young-Min;Jo, Hyung-Chul;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.158-164
    • /
    • 2018
  • Wind power forecast is critical for efficient power system operation. However, wind power has high forecasting errors due to uncertainty caused by the climate change. These forecasting errors can have an adverse impact on the power system operation. In order to mitigate the issues caused by the wind power forecasting error, wind power curtailment and energy storage system (ESS) can be introduced in the power system. These methods can affect the economics of wind power resources. Therefore, it is necessary to evaluate the economics of the methods for mitigating the wind power forecasting error. This paper attempts to analyze the economics of wind power curtailment and ESS operation for mitigating wind power forecasting error. Numerical simulation results are presented to show the economic impact of wind power curtailment and ESS operation.

The Fuzzy Power Function of a Test (검정에 관한 퍼지 검정력 함수의 성질)

  • Gang, Man-Gi;Jeong, Ji-Yeong;Park, Yeong-Rye;Choe, Gyu-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.183-186
    • /
    • 2007
  • We introduction some properties for fuzzy power function of performance of a test. First we define fuzzy type I error and type II error for the probability of the two types of error. And we show that an fuzzy error probability of one kind can only be reduced at cost of increasing the other fuzzy error probability.

  • PDF

A Symbiotic Evolutionary Design of Error-Correcting Code with Minimal Power Consumption

  • Lee, Hee-Sung;Kim, Eun-Tai
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.799-806
    • /
    • 2008
  • In this paper, a new design for an error correcting code (ECC) is proposed. The design is aimed to build an ECC circuitry with minimal power consumption. The genetic algorithm equipped with the symbiotic mechanism is used to design a power-efficient ECC which provides single-error correction and double-error detection (SEC-DED). We formulate the selection of the parity check matrix into a collection of individual and specialized optimization problems and propose a symbiotic evolution method to search for an ECC with minimal power consumption. Finally, we conduct simulations to demonstrate the effectiveness of the proposed method.

  • PDF

A Comprehensive Model for Wind Power Forecast Error and its Application in Economic Analysis of Energy Storage Systems

  • Huang, Yu;Xu, Qingshan;Jiang, Xianqiang;Zhang, Tong;Liu, Jiankun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2168-2177
    • /
    • 2018
  • The unavoidable forecast error of wind power is one of the biggest obstacles for wind farms to participate in day-ahead electricity market. To mitigate the deviation from forecast, installation of energy storage system (ESS) is considered. An accurate model of wind power forecast error is fundamental for ESS sizing. However, previous study shows that the error distribution has variable kurtosis and fat tails, and insufficient measurement data of wind farms would add to the difficulty of modeling. This paper presents a comprehensive way that makes the use of mixed skewness model (MSM) and copula theory to give a better approximation for the distribution of forecast error, and it remains valid even if the dataset is not so well documented. The model is then used to optimize the ESS power and capacity aiming to pay the minimal extra cost. Results show the effectiveness of the new model for finding the optimal size of ESS and increasing the economic benefit.

Short-term Power Consumption Forecasting Based on IoT Power Meter with LSTM and GRU Deep Learning (LSTM과 GRU 딥러닝 IoT 파워미터 기반의 단기 전력사용량 예측)

  • Lee, Seon-Min;Sun, Young-Ghyu;Lee, Jiyoung;Lee, Donggu;Cho, Eun-Il;Park, Dae-Hyun;Kim, Yong-Bum;Sim, Isaac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.79-85
    • /
    • 2019
  • In this paper, we propose a short-term power forecasting method by applying Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network to Internet of Things (IoT) power meter. We analyze performance based on real power consumption data of households. Mean absolute error (MAE), mean absolute percentage error (MAPE), mean percentage error (MPE), mean squared error (MSE), and root mean squared error (RMSE) are used as performance evaluation indexes. The experimental results show that the GRU-based model improves the performance by 4.52% in the MAPE and 5.59% in the MPE compared to the LSTM-based model.

Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors (Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.

On-Site Calibration Technology of Burden using Voltage Transformer Comparator (전압변성기 비교기를 이용한 부담의 현장교정 기술)

  • Jung, Jae Kap;Kwon, Sung Won;Park, Young Tae;Kim, Myung Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.11
    • /
    • pp.503-507
    • /
    • 2005
  • Both ratio error and phase angle error in voltage transformer(VT) depend on values of VT burden used. Thus, precise measurement of burden is very important for the evaluation of VT. A method of evaluation for VT burden has been developed by employing the portable decade resistor, with AC-DC resistance difference less than 10-3. The burden value(value and power factor) can be obtained by conductance and susceptance, obtained by measuring the change of ratio error and phase angle error caused by the resistance change of decade resistor. The burden value and power factor obtained by the method are consistent with those obtained using power analyzer within corresponding uncertainties.

Design of Low Power Error Correcting Code Using Various Genetic Operators (다양한 유전 연산자를 이용한 저전력 오류 정정 코드 설계)

  • Lee, Hee-Sung;Hong, Sung-Jun;An, Sung-Je;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.180-184
    • /
    • 2009
  • The memory is very sensitive to the soft error because the integration of the memory increases under low power environment. Error correcting codes (ECCs) are commonly used to protect against the soft errors. This paper proposes a new genetic ECC design method which reduces power consumption. Power is minimized using the degrees of freedom in selecting the parity check matrix of the ECCs. Therefore, the genetic algorithm which has the novel genetic operators tailored for this formulation is employed to solve the non-linear power optimization problem. Experiments are performed with Hamming code and Hsiao code to illustrate the performance of the proposed method.