• Title/Summary/Keyword: Power interconnection

Search Result 319, Processing Time 0.026 seconds

Evaluation of Interconnection Capacity of SCOGNs to the power Distribution Systems from the Viewpoint of Voltage Regulation (전압조정 측면에서 본 소형 열병합발전 배전계통 도입량 평가)

  • 최준호;김재철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1096-1102
    • /
    • 1999
  • This paper discusses the evaluation of interconnection capacity of small cogeneration(SCOGN) systems to the power distribution systems from the viewpoint of voltage regulation. Power utilities are required to keep the customers' voltage profile over a feeder close to the rated value under all load conditions. However, it is expected that the interconnection of SCOGNs to the power distribution systems impacts on the existing voltage regulation method and customers' voltage variations. Therefore, SCOGNs should be integrated to the automated power distribution systems to prevent interconnection problems and supply high quality electricity to the customers. For these reasons, we should proceed with the evaluation of interconnection capacity of SCOGNs to the power distribution systems. However, it is generally impossible to perform actual testing on the power distribution systems, and standardized methodologies and guidelines are not developed to evaluate it. The criterion indexes for voltage regulation and variations are presented in order to evaluate the interconnection capacity of SCOGNs to the power distribution systems. In addition, the evaluation methodology of interconnection capacity of SCOGNs for power distribution systems is presented. It is expected that the resulted of this paper are useful for power system planners to determine the interconnection capacity of SCOGNs and dispersed storage and generation (DSG) systems to the power distribution systems.

  • PDF

Hierarchical Multiplexing Interconnection Structure for Fault-Tolerant Reconfigurable Chip Multiprocessor

  • Kim, Yoon-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.318-328
    • /
    • 2011
  • Stage-level reconfigurable chip multiprocessor (CMP) aims to achieve highly reliable and fault tolerant computing by using interwoven pipeline stages and on-chip interconnect for communicating with each other. The existing crossbar-switch based stage-level reconfigurable CMPs offer high reliability at the cost of significant area/power overheads. These overheads make realizing large CMPs prohibitive due to the area and power consumed by heavy interconnection networks. On other hand, area/power-efficient architectures offer less reliability and inefficient stage-level resource utilization. In this paper, I propose a hierarchical multiplexing interconnection structure in lieu of crossbar interconnect to design area/power-efficient stage-level reconfigurable CMP. The proposed approach is able to keep the reliability offered by the crossbar-switch while reducing the area and power overheads. Experimental results show that the proposed approach reduces area by up to 21% and power by up to 32% when compared with the crossbar-switch based interconnection network.

Environmental Analysis and Evaluation on Fuel Mix by Electric Power System Interconnection in Northeast Asia (동북아 전력계통 연계로 인한 환경성 분석 및 국내 전원구성에의 영향 평가)

  • Chung, Koo-Hyung;Kim, Hong-Geun;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.769-771
    • /
    • 2005
  • Interconnection of electric power systems, as an alternative for energy cooperation under regional economic bloc, has been under extensive debate before progressing the restructure in electric power industry and rapidly expanded in many regions after 1990s. Especially, since northeast asia has strong supplementation in resource, load shape, fuel mix etc., electric power system interconnection in this region may bring considerable economic benefits. In this paper, we evaluate economic benefits from CO2 emission abatement and effectiveness on the fuel mix in Korea by the interconnection in northeast asia. For this analysis, we evaluate effects of CO2 emission abatement under various system interconnection scenarios and compare the results of fuel mix in Korean electric power system with and without transacted electricity via interstate electric power system in northeast asia.

  • PDF

Voltage quality and Network Interconnection Standard Suitability in Jeju-Hangwon Wind Power Generation Farm (제주행원 풍력발전단지의 전압품질 및 연계기준 적합성 분석)

  • Kim, Se-Ho;Kim, Eel-Hwan;Huh, Jonhg-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.53-59
    • /
    • 2006
  • The number of wind generation installations are growing substantially in Jeju, Korea. Many of these installations are significant in size and directly connected to the distribution system. Utility grid interconnection standards for interconnecting non-utility distributed generation systems are essential to both power system company and generation company. These interconnection standards are important to utilities, customers, wind generation manufactures and nation. In this paper, it is investigated the voltage quality and the suitability of Jeju-Hangwon wind power generation farm by network interconnection technology standard.

PSCAD/EMTDC Modeling/Analysis of VSC-HVDC Transmission for Cross Border Power System Interconnection

  • Kim, Jong-Yul;Yoon, Jae-Young;Kim, Ho-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • When two adjacent AC systems operate at different frequency such as 50Hz and 60Hz, as in the case of ROK and Russia, the only way to practically obtain the advantages of power system interconnection is to use HVDC connection. In this paper, application of the VSC-HVDC transmission for power system interconnection between Russia and ROK is evaluated through the PSCAD/EMTDC modeling and analysis. The simulation results show the feasibility of proposed system for cross border power system interconnection.

Pressure Contact Interconnection for High Reliability Medium Power Integrated Power Electronic Modules

  • Yang, Xu;Chen, Wenjie;He, Xiaoyu;Zeng, Xiangjun;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.544-552
    • /
    • 2009
  • This paper presents a novel spring pressure contact interconnect technique for medium power integrated power electronics modules (IPEMs). The key technology of this interconnection is a spring which is made from Be-Cu alloy. By means of the string pressure contact, sufficient press-contact force and good electrical interconnection can be achieved. Another important advantage is that the spring exhibits excellent performance in enduring thermo-mechanical stress. In terms of manufacture procedure, it is also comparatively simple. A 4 kW half-bridge power inverter module is fabricated to demonstrate the performance of the proposed pressure contact technique. Electrical, thermal and mechanical test results of the packaged device are reported. The results of both the simulation and experiment have proven that a good performance can be achieved by the proposed pressure contact technique for the medium power IPEMs.

Economic Feasibility on the Interconnected Electric Power System in North-East Asia (동북아 전력계통 연계에 따른 경제성 분석)

  • Chung, Koo-Hyung;Han, Seok-Man;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.76-84
    • /
    • 2006
  • Interstate electric power system, as an alternative for energy cooperation under regional economic block, has been hotly debated before progressing the restructure in electric power industry and rapidly expanded in many regions after 1990s. Especially, since northeast asia has strong supplementation in resource, load shape, fuel mix etc., interconnection of electric power systems in this region may bring considerable economic benefits. This paper implements a mathematical optimization model, ORIRES, proposed by Russia, in analysing the economic feasibility of system interconnection. Additional analyses on the environmental impact of the system interconnection, and sensitivity of key factor inputs have been performed.

Dynamic change of frequency after a generator outage in an Interconnection considering the primary control (연계계통에서 발전기 정지에 따른 주파수의 동적 변화)

  • Stanojevic, Vladimir;Moon, Y.H.;Yoon, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.95-99
    • /
    • 2001
  • Frequency is the unique physical value for all the interconnected systems. Therefore. the load frequency control is in the responsibility of all members in the interconnection power unbalance in one of the interconnected system can cause the problems in others. In the following text a brief description and the role of frequency in an interconnected system will be presented. Following is the short description of the Balkan Interconnection (UCTE Second Synchronous Zone) with schematic diagram. A Power-Frequency (P-f) dynamic model of a control area wil1 be shown. Model gives the analytical solution for frequency change versus a time after outage of a generator in the power system. This model will be applied to the Balkan Interconnection and compared with numerical approach. Advantages and drawbacks of the analytical method will be discussed Purpose of using this model is to investigate if the pumps in reversible hydropower plant will be underfrequency shed after the outage of the biggest generator unit in the interconnection, according %o (n-1) security postulate.

  • PDF

Interconnection Capacity Evaluation of Distributed Resources at the Distribution Networks in View of Distribution Protection Coordination (배전계통의 보호협조측면에서 본 분산전원 연계용량 검토)

  • Choi, Joon-Ho;Ro, Kyoung-Soo;Park, Sung-Jun;Song, Kyung-Bin;Yun, Sang-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.107-116
    • /
    • 2007
  • The introduction of new renewable energy is going on increase with the second plan of the Korean Government "Technology Development, Utilization and Popularization of New Renewable Energy". In general, it is connected to the power system due to the nature of it's source characteristics but it's interconnection operation impacts on the power system planning and operation. The operation schemes of the existing power distribution system are based on the unidirectional power flow, but unidirectional power flow changes to bidirectional power flow due to the interconnection operation of new renewable energy. It degrade the existing protection coordination system and power quality of the power distribution system. Thus, the technical evaluation process of the interconnection of new renewable energy are necessary. In this paper, the characteristics of the existing automatic recloser and sectionalizer are reviewed and interconnection capacity evaluation method of the DR(distributed resources) in the existing automatic recloser-sectionalizer protective coordination system are proposed.

Northeast Asia Interconnection and Regional Reserve Increase Effects (동북아 연계선로 구성 및 지역별 예비력 증가 효과)

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.417-419
    • /
    • 2005
  • This paper presents the effects and the regional power distribution of an increase or a decrease of a power reserve by load flow calculations under seasonal load patterns of each country for the future power shortages faced by the metropolitan areas or by the southeastern area of the South Korea in North-East Asia. In these connections, the types of a power transmission for interconnection consist of the 765kV HVAC and the HVDC. In this paper, the various cases of the power system interconnections in Far-East Asia are presented, and the resulting interconnected power systems are simulated by means of a power flow analysis performed with the PSS/E 28 version tool. The power flow map is drawn from data simulated and the comparative study is done. In this future, a power flow analysis will be considered to reflect the effects of seasonal power exchanges And the plan of assumed scenarios will be considered with maximum or minimum power exchanges during summer or winter in North-East Asia countries.

  • PDF