• Title/Summary/Keyword: Power quality

Search Result 5,264, Processing Time 0.043 seconds

A Study on Improving Power Quality by Real-time Reactive Power/Power Factor Compensating Equipment at Substation in Marshalling Yard (전기철도 차량기지 변전소의 실시간 무효전력/역률 보상설비 적용에 따른 전력품질 개선에 관한 연구)

  • Park, Soo-Cheol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.58-67
    • /
    • 2006
  • In this paper, real-time reactive power/power factor compensating equipment is suggested for improving power quality at electrical railway's substation in marshalling yard and designing optimal capacity of compensating equipment for actual apply at current marshalling yard. For this purpose, several kind of real-time reactive power/power factor compensating equipments are introduced and SVG(Static Var Generator) as optimal compensating equipment that is suitable for load characteristics of substation in marshalling yard is suggested. This paper shows proper simulations by suggested equipment using PSIM software and describe basic compensating principle and simulation results. Optimal capacity design for applying current marshalling yard is based on real measured power quality data. Power quality improvement that is performed by SVG as real-time reactive power/power factor compensating equipment is estimated at electrical railway's substation in marshalling yard. As reference, real-time reactive power/power factor compensating equipment is composed by voltage source inverter and DC capacitors.

Development of a Data Acquisition System for the Testing and Verification of Electrical Power Quality Meters

  • Simic, Milan;Denic, Dragan;Zivanovic, Dragan;Taskovski, Dimitar;Dimcev, Vladimir
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.813-820
    • /
    • 2012
  • This paper presents the development of a software supported acquisition system for metrological verification and testing of the equipment for monitoring and analysis of the basic electrical power quality parameters. The described procedure consists of two functionally connected segments. The first segment involves generation of the reference three-phase voltage signals, including the possibility of simulation of the various power quality disturbances, typical for electrical power distribution networks. The second part of this procedure includes the real-time recording of power quality disturbances in three-phase distribution networks. The procedure is functionally supported by the virtual instrumentation concept, including a software application developed in LabVIEW environment and data acquisition boards NI 6713 and NI 9215A. The software support of this system performs graphical presentation of the previously generated and recorded signal waveforms. A number of the control functions and buttons, implemented on the virtual instrument front panels, are provided to adjust the basic signal acquisition, generation and recording parameters.

A Study on the Application of UPQC in AC Railway System (교류철도급전계통에 전력품질보상장치 적용에 관한 연구)

  • Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.220-229
    • /
    • 2004
  • The AC railway system is quite differing from the general electric power system because it is single- phase and intermittently heavy loads. Thus, inevitably power quality problems are occurred in the AC railway system, i.e. voltage regulation voltage sags, voltage imbalance, and harmonic distortion. Recently, the power quality of the AC railway system becoming a hot issue because it is affect the control and safety of high-speed traction. In addition it is also affect the power quality of the electric power system. In this paper, single-phase Unified Power Quality Conditioner(UPQS) for the AC railway system is proposed to compensate the voltage sags and harmonic distortion. The configurations and control schemes of the proposed single-phase UPQC are presented. The effectiveness of the proposed single-phase UPQC application is verified by the PSCAD/EMTDC simulation works. It can be shown that the application of UPQC in the AC railway system is very useful to compensate the voltage sags and harmonic distortion from the results of related simulation works.

Study on the measuring system of power quality for transmission system (송전계통의 전기품질 측정 시스템에 관한 연구)

  • Kim Yeoung-Noh;Shin Bong-Il;Lee Hee-Chul;Kwak No-Hong;Jeon Young-Soo;Park Sang-Ho;Lee Il-Moo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.432-434
    • /
    • 2006
  • The additional matters appear to be considered in several aspects for building up power-quality measuring system of transmission system(high voltage system) compared to distribution system(middle or low voltage system). Like in distribution system, input signals are also received from PT and CT source of voltage and current respectively in transmission system and applied in accordance with a certain rate. In this case, very big error rate can be occurred according to the specification of the measuring system as the applying rate is bigger than in distribution system beyond comparison. In addition, when the abnormal signal occurred such as sag/swell, interruption, transient etc., power quality of other sires linked to the system also should be checked to find the accurate cause of the abnormal power-quality signals from the corresponding. site. Accordingly, the accurate diagnosis on the condition of power quality for the system depends on the way how the synchronization system is brought along for each site. This paper will suggest the solution for the most effective system building focused on how to solve the problem of the error rate and synchronization described in the above when building up the measuring system of power quality for transmission system.

  • PDF

A DSP based Three Phase Power Quality Analyzer for Motor Drives (모터 구동장치를 위한 DSP기반 3상 전력품질분석 시스템)

  • 김우용;정영국;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • This paper presents a digital instrument for a DSP based power quality analysis in three phase power system where current waveform is non-sinusoidal. it is based on stand alone type TMS320C31 DSP(digital signal processor)board and on a special high-speed data acquisition system. Power quality of low power motor drives are analyzed and processed by using a simple average power algorithm, and result of power analysis are displayed by LCD in the proposed system. This paper also goes on to discuss the performance of an instrument prototype, both in terms of accuracy and speed of measurement under the transient and steady state condition.

  • PDF

A Power Quality Monitoring System Based On The Digital Signal Processor (DSP를 기반으로 운용되는 전력품질 감시 시스템)

  • Lee, Kyo-Sung;Lee, Yong-Jea;Yim, Sang-Wook;Jo, Pung-Gu;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.173-175
    • /
    • 2003
  • To improve the power quality, various types of equipment are used. However, without determining the existing levels of power quality, electric utilities and customers cannot adopt suitable strategies and equipment to improve the power quality. Therefore, in this paper, power quality monitoring system is discussed.

  • PDF

A Single-Phase Unified Power Quality Conditioner with a Frequency-Adaptive Repetitive Controller

  • Phan, Dang-Minh;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.790-799
    • /
    • 2018
  • This paper proposes a single-phase unified power quality conditioner (S-UPQC) for maintaining power quality issues in a microgrid. The S-UPQC can compensate the voltage and current harmonics, voltage sag, and swell as a dynamic voltage restorer (DVR), regardless of variations in the grid frequency. Odd harmonics are treated as even-order harmonics in a rotating frame to implement the harmonic compensators with only one repetitive controller (RC) without any harmonic extractor. The dynamic performance is improved and the delay time is reduced in the RC. The S-UPQC control scheme is designed to maintain accurate and stable operation under deviations of the grid frequency by using the Lagrange interpolation-based finite-impulse-response (LIFIR) filter approximation method. The proposed control schemes were validated through a simulation and experiment.

Development of Intelligence Electric Power Quality Assessment Model (지능형 전기품질 평가모델 개발)

  • Lee, Buhm;Choi, Nam-Sup;Kim, Kyung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.531-536
    • /
    • 2007
  • This paper presents a power quality assessment model based on the Analytic hierarchy process. This model can assess unified power quality index which provide an overall performance of the distribution system. To obtain the unified power quality index, we propose the use of the AHP model which has three states: [Ideal]-[Actual]-[Worst]. The proposed method is especially useful and effective for planning. We have applied the proposed method to an actual relatively large system, and verified the usefulness.

Complex Neural Classifiers for Power Quality Data Mining

  • Vidhya, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1715-1723
    • /
    • 2018
  • This work investigates the performance of fully complex- valued radial basis function network(FC-RBF) and complex extreme learning machine (CELM) based neural approaches for classification of power quality disturbances. This work engages the use of S-Transform to extract the features relating to single and combined power quality disturbances. The performance of the classifiers are compared with their real valued counterparts namely extreme learning machine(ELM) and support vector machine(SVM) in terms of convergence and classification ability. The results signify the suitability of complex valued classifiers for power quality disturbance classification.

Development of Power Quality Monitoring System(PQMS) : Object-Oriented Design for Power Quality Analysis Software (전력품질 감시 시스템 개발(2): 객체지향 방법론을 적용한 전력품질 분석 소프트웨어 설계)

  • Kim, Young-Il;Bahng, Soon-Jung;Han, Jin-Hee;Yun, Tae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.131-133
    • /
    • 2003
  • In this papers, it will be introduced that power quality analysis software design including investigation of mutual relation between power quality data and mechanism for getting data from power quality database according as based on object-oriented methodology. The UML which is only a language and so is just part of a software development, may be used to visualize, specify, construct, and document the artifacts of software-intensive system.

  • PDF