• Title/Summary/Keyword: Pre-Chlorination

Search Result 28, Processing Time 0.022 seconds

Ozone-Activated Carbon Treatment in Middle Keum River containing Ammonia-Nitrogen (암모니아성질소를 함유한 금강중류 하천수의 오존-활성탄처리)

  • Kim, Chung-Hwan;Jung, Sang-Gi;Kim, Hag-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.355-363
    • /
    • 2002
  • A demonstration plant was carried out to investigate the removal efficiency of $NH_3-N$ and $KMnO_4$ consumption depending on the existence of pre-chlorination for the ozonation and activated carbon process in the S water treatment plant which is located at the middle of Keum River. The averge removal efficiency of $KMnO_4$ consumption for $O_3/GAC$ processes with pre-chlorination and $O_3/BAC$ processes without pre-chlorination were 48.6% and 50% respectively. It is similar to removal effect of $KMnO_4$ consumption for GAC and BAC process depending on the existence of pre-chlorination. Otherwise, the removal of THMFP for GAC and BAC process was 58% and 68% respectively. $NH_3-N$ was not almost removed by sand filter and ozonation, but the average removal efficiency in the BAC process was about 31%. Especially, $NH_3-N$ was not almost removed by $O_3/BAC$ processes at the low temperature (below $$10^{\circ}C$$) in the winter season, $O_3/BAC$ processes have the advantage of removal of organic substance when it is compared to pre -chlorination followed by $O_3/GAC$ processes. Pre-chlorination followed by $O_3/GAC$ processes were required to remove $NH_3-N$ in the winter season because the removal of $NH_3-N$ was almost ineffective by $O_3/BAC$ process.

Performance Evaluation of MF Membrane Filtration Pilot System Associated with Pre Coagulation-Sedimentation with Iron-Based Coagulant and Chlorination Treatment (철염계 응집제를 사용한 전응집침전, 전염소처리와 PVDF 재질의 정밀여과 막을 조합한 막 여과 정수처리시스템 평가에 관한 연구)

  • Lee, Sanghyup;Jang, Nakyong;Yoshimasa, Watanabe;Choi, Yongsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.588-597
    • /
    • 2004
  • In this research, we investigated the variation of transmembrane pressure and permeate water quality with pre coagulation and sedimentation with iron based coagulant and chlorination of feed water for PVDF (polyvinylidene fluoride) based MF membrane filtration. NaCIO was fed to the membrane module with dosage of 0.5mg/L and maintained during filtration. To observe the effect of raw water, three types of raw and processed waters, including river surface water, coagulated water and coagulated-settled water, were applied. In case of river surface water, the transmembrane pressure increased drastically in 500 hours of operation. On the contrary, no significant increase in transmembrane pressure was observed for 1,200 hours of operation for coagulated water and coagulated-settled waters. The turbidity of permeate was lower than a detection limit of equipment for all raw waters. The removal efficiency of humic substances of coagulated water and coagulated-settled water was approximate ten times of that of surface river water. And, the removal efficiency of TOC and DOC was approximate two times of that of surface river water. From the results of plant operation, stable operation was maintained at $0.9m^3/m^2{\cdot}day$ filtration flux through the combination of pre-coagulation and pre-chlorination. However, the water quality of permeate was the best when pre-coagulation-sedimentation process was combined with pre-chlorination.

Removal of Geosmin by Combined Treatment of PAC and Intermediate Chlorination in the Conventional WTP (표준정수처리공정에서 분말활성탄과 중간염소를 이용한 지오스민 저감방안)

  • Kim, Tae Kyun;Choi, Jae Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, the effective treatment reducing geosmin and dosage of PAC was suggested when taste & odor compounds flow in. The removal efficiency of geosmin was evaluated with types of chlorination. In case of low geosmin concentration below 25 ng/L, removal efficiency of geosmin was estimated at 46% by combined treatment of pre and intermediate-chlorination. But, in the exclusive intermediate-chlorination treatment, removal efficiency of geosmin was increased to 57%. In the medium geosmin concentration (25~79 ng/L), removal efficiency of geosmin was estimated at 59% by combined treatment. But, in the exclusive intermediate-chlorination treatment, removal efficiency of geosmin was increased to 87%. When high geosmin concentration above 80 ng/L flows in, removal efficiency of geosmin was estimated at 69% by combined treatment. However, in the exclusive intermediate-chlorination treatment, removal efficiency of geosmin was increased to 95%. Then, the exclusive intermediate-chlorination has an important effect on removal of geosmin. After correlation of geosmin concentration and dosage of PAC was analyzed, the coefficient of determination was estimated at 0.96. And, the proper PAC dosage chart was proposed. Also, at a initial occurrence of geosmin, when the combined treatment by intermediate-chlorination and PAC was applied, particle-bound geosmin should be removed continuously. Finally, it is proved that the combined treatment was effective to remove the geosmin by threshold levels as well as to reduce the dosage of PAC.

The Effect of Pre-chlorination on the Coagulation of Microcystis aeruginosa (전염소처리가 Microcystis aeruginosa 응집에 미치는 영향)

  • Lee, Tae-Gwan;Jin, Jung-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.505-510
    • /
    • 2000
  • In this study the effects of pre-chlorination on the coagulation of water which contain Microcystis aeruginosa. were investigated on the laboratory scale. We prepared the sample of $10^5cell/mL$ Microcystis aeruginosa and then applied 0.2, 1.0, 10 mg-Cl/L chlorine on the sample After reaction period(1 minute and 1 hour), each sample was coagulated. As a result, after 0.4 mg-Al/L coagulant dose, turbidities of all samples were below 2 mg-Kaolin/L. Turbidity was not affected by chlorine dose. As the dose of chlorine was increased, the residual aluminum was decreased, but result of $UV_{254}$ was adverse.

  • PDF

The Effects of Temperature, Coagulants, and Pre-chlorination on the Removal of Cryptosporidium and Giardia by Coagulation Process (응집침전공정에서 수온, 응집제 종류, 전염소 주입에 따른 크립토스포리 디움과 지아디아 제거 효율 변화에 관한 연구)

  • Park, Sang-Jung;Chung, Young-Hee;Chung, Hyen-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.531-538
    • /
    • 2007
  • The effects of temperature, coagulants and pre-chlorination on the removal of turbidity and pathogenic protozoa by coagulation process were investigated using jar test of lab scale. In room temperature ($25^{\circ}C$), protozoa were removed over 1.0log at the proper concentration range of coagulants, and up to over 2log at the optimal concentration of coagulants. Considering the 1.5log target removal for Giardiain the processes of coagulation, sedimentation, and filtration, this results implies that the target could be satisfied. However, the removal of protozoa and turbidity was reduced, and optimal PAC concentration was narrowed in low turbidity and cold temperature ($5^{\circ}C$). These results suggest that the drop of coagulation efficiency may be occurred in winter if the conditions are not optimized. Despite the effect of water temperature, the relation of turbidity and protozoa removal appeared to be good. The various kinds of coagulants did not significantly affected for removals of turbidity and protozoa when the concentrations of $Al_2O_3$ were considered. Prechlorination did not increase or decrease the removal of turbidity and protozoa in optimum condition at room temperature, pH 7, 15mg/L of PAC concentration.

Effect of Pre-chlorine and Polyamine Dosing for Microcystis sp. Bloomed Water on Drinking Water Treatment Processes : Particle Matter Distribution (Microcystis sp.로 수화된 상수원수에 전염소 및 폴리아민 투입이 정수처리에 미치는 영향 : 입자상 물질 분포)

  • Son, Hee-Jong;Kim, Sang-Goo;Lee, Jeong-Kyu;Hwang, Young-Do;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.556-560
    • /
    • 2017
  • This research carried out to evaluate the disadvantage of pre-chlorination and the effect of polyamine as coagulant aids for treating the blooming water with Microcystis sp.. Pre-chlorination on blooming water makes the colony of Microcystis sp. to the smaller size. Coagulation with polyamine advanced treatment efficiency not only turbidity but also particulate matters especially less then $5{\mu}m$ size for the blooming water compared with using alum alone. Particle count was more sensitive than turbidity on water quality management of settlement and filtrate.

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Prediction Models of Residual Chlorine in Sediment Basin to Control Pre-chlorination in Water Treatment Plant (정수장 전염소 공정 제어를 위한 침전지 잔류 염소 농도 예측모델 개발)

  • Lee, Kyung-Hyuk;Kim, Ju-Hwan;Lim, Jae-Lim;Chae, Seon Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.601-607
    • /
    • 2007
  • In order to maintain constant residual chlorine in sedimentation basin, It is necessary to develop real time prediction model of residual chlorine considering water treatment plant data such as water qualities, weather, and plant operation conditions. Based on the operation data acquired from K water treatment plant, prediction models of residual chlorine in sediment basin were accomplished. The input parameters applied in the models were water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage. The multiple regression models were established with linear and non-linear model with 5,448 data set. The corelation coefficient (R) for the linear and non-linear model were 0.39 and 0.374, respectively. It shows low correlation coefficient, that is, these multiple regression models can not represent the residual chlorine with the input parameters which varies independently with time changes related to weather condition. Artificial neural network models are applied with three different conditions. Input parameters are consisted of water quality data observed in water treatment process based on the structure of auto-regressive model type, considering a time lag. The artificial neural network models have better ability to predict residual chlorine at sediment basin than conventional linear and nonlinear multi-regression models. The determination coefficients of each model in verification process were shown as 0.742, 0.754, and 0.869, respectively. Consequently, comparing the results of each model, neural network can simulate the residual chlorine in sedimentation basin better than mathematical regression models in terms of prediction performance. This results are expected to contribute into automation control of water treatment processes.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

A Study on Efficient Simple Water Supply System in Rural Areas (농촌지역의 효율적인 간이 상수처리에 관한 연구)

  • 이홍근;백남원;백도현
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.103-115
    • /
    • 1996
  • The purpose of this study was to establish acceptable criteria for the design of simple water treatment plant in rural areas. To develop efficient simple water treatment methods for rural areas, water quality in the study areas was investigated and rapid and slow filtrations in pilot-scale were tested under various conditions. The main results of this study are as follows. It was found that the water qualities of the study areas exceed the drinking water standards, which implies that some treatments are required in rural areas. Treatment efficiencies of both rapid sand and dual-media (sand and anthracite) filtration without pre-treatment such as flocculation and sedimentation are very low, which were turned out to be unadequate for the rural areas. Treatment efficiencies of both vertical and horizontal slow filtration without chlorination are very high for consumed $KMnO_4, NH_3-N, NO_3-N$, turbidity, and very low for coliform and bacteria. Treatment efficiencies of both vertical and horizontal slow filtration with chlorination are very high over the most pollutants. A slow filtration with chlorination is efficient for the rural areas. An adequate depth of sand layer is over 60 cm. A horizontal filtration is more economical than a vertical filtration. A horizontal filtration can be operated for a relatively long periods of time without sand washing or replacement because clogging is removed by simple back-washing.

  • PDF