• Title/Summary/Keyword: Pre-Ruminant

Search Result 6, Processing Time 0.016 seconds

STUDY ON THE FEEDING REGIMES AND GROWTH PATTERN OF PRE-RUMINANT PABNA ZEBU CALVES

  • Rahman, M.M.;Islam, M.R.;Zaman, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.659-664
    • /
    • 1992
  • Twelve day old Pabna zebu calves of similar weights were assigned at random to 3 different calf starter-rations namely $T_0$, $T_1$ and $T_2$ to determine the effect of feeding regimes and growth pattern of calves upto 3 months of age. Calves allowed to intake starter 0.5 percent of body weight from 2nd week on to 7th weeks of age, while starter at 1 percent of body weight was allowed later on upto 13th weeks of age. Calves started to intake green grass after 2nd to 3rd weeks and average intake per day was limited to 1 kg upto the end of experiment, while calves started to take rice straw ad libitum after 6th weeks of age. Colostrum feeding was offered ad libitum and in addition calves suckled their dam's milk shortly before and after milking usually in the morning and evening. Growth of calves in different treatment groups was found statistically insignificant. The mean growth rate per head per day ranged from 196.43-375.0 g for $T_0$ group, 185.72-360.72 g for $T_1$ group and 180.1-385.72 g for $T_2$ group respectively between 1st to 7th weeks of age while the growth rate ranged from 309.53-328.57 g for $T_0$, 304.29-342.86 g for $T_1$ and 304.77-333.30 g for $T_2$ groups respectively from 9th weeks on to the end of the experiment.

Characterising Forages for Ruminant Feeding

  • Dynes, R.A.;Henry, D.A.;Masters, D.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.116-123
    • /
    • 2003
  • Forages are the most important feed resource for ruminants worldwide, whether fed as pastures, forage crops or conserved hay, silage or haylage. There is large variability in the quality of forages so measurement and prediction of feeding value and nutritive value are essential for high levels of production. Within a commercial animal production system, methods of prediction must be inexpensive and rapid. At least 50% of the variation in feeding value of forages is due to variation in voluntary feed intake. Identification of the factors that constrain voluntary feed intake allows these differences to be managed and exploited in forage selection. Constraints to intake have been predicted using combinations of metabolic and physical factors within the animal while simple measurements such as the energy required to shear the plant material are related to constraints to intake with some plant material. Animals respond to both pre- and post-ingestive feedback signals from forages. Pre-ingestive signals may play a role in intake with signals including taste, odour and texture together with learned aversions to nutrients or toxins (post-ingestive feedback signals). The challenge to forage evaluation is identification of the factors which are most important contributors to these feedback signals. Empirical models incorporating chemical composition are also widely used. The models tend to be useful within the ranges of the datasets used in their development but none can claim to have universal application. Mechanistic models are becoming increasingly complex and sophisticated and incorporate both feed characteristics and use of biochemical pathways within the animal. Improvement in utilisation through the deliberate selection of pasture plants for high feeding value appears to have potential and has been poorly exploited. Use of Near Infrared Reflectance Spectroscopy is a simple method that offers significant potential for the preliminary screening of plants with genetic differences in feeding value. Near Infrared Reflectance Spectroscopy will only be as reliable as the calibration sets from which the equations are generated.

Implantation in Ruminants: Changes in Pre-Implantation, Maternal Recognition of Pregnancy, Control of Attachment and Invasion - Review -

  • Nagaoka, K.;Yamaguchi, H.;Aida, H.;Yoshioka, K.;Takahashi, M.;Christenson, R.K.;Imakawa, K.;Sakai, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.845-855
    • /
    • 2000
  • As high as 50% of pregnancies are known to fail and the majority of such losses occur during the peri-implantation period. For the establishment of pregnancy in mammalian species, therefore, implantation of the conceptus to the maternal endometrium must be completed successfully. Physiological events associated with implantation differ among mammals. In ruminant ungulates, an elongation of the trophohlast in early conceptus development is required before the attachment of the conceptus to the uterine endometrium. Moreover, implantation sites are restricted to each uterine caruncula where tissue remodeling, feto-maternal cell fusion and placentation take place in a coordinated manner. These unique events occur under strict conditions and are regulated by numerous factors from the uterine endometrium and trophoblast in a spatial manner. Interferon-tau (IFN-${\tau}$), a conceptus-derived anti-Iuteolytic factor, which rescues corpus luteum from its regression in ruminants, is particularly apt to play an important role as a local regulator in coordination with other factors, such as TGF-${\beta}$, Cox-2 and MMPs at the attachment and placentation sites.

Glucose Tolerance and Insulin Response to Intravenous Glucose Load in Sheep Fed on Germinated Sorghum Grain

  • Achmadi, Joelal;Pangestu, Eko;Wahyono, Fajar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1575-1579
    • /
    • 2007
  • The glucose tolerance and pancreatic insulin secretion response to glucose in sheep fed on germinated sorghum grain were determined using an intravenous glucose load. Twelve male Thin Tail sheep (an Indonesian native sheep, 12 months old and 14.8 kg average body weight) were divided randomly into sorghum grain-based (S), germinated sorghum grain-based (G) and maize grain-based (C) diets. Sheep were maintained at the same daily intake levels of metabolizable energy and crude protein in the diets throughout the experimental period. After two months of the experimental conditions, each diet group was subjected to an intravenous glucose load experiment in which five doses of glucose (0, 10, 20, 40 and 80 mg/kg BW) were injected to estimate the rate of glucose removal from blood and the pancreatic insulin secretion response. For each sheep and each glucose load dose, the incremental blood serum glucose and insulin concentrations above pre-injection concentration were calculated as serum glucose and insulin response areas. At all glucose doses, sheep fed on S diet had a greater (p<0.05) glucose response area compared to those of sheep fed on G and C diets. Likewise at all glucose doses, the insulin response area was smaller (p<0.05) in sheep fed on S diet than in sheep fed on G and C diets. The glucose and insulin response areas in sheep fed on G and C diets differed slightly. It was concluded that the portion of maize grain in the ruminant ration could be substituted by germinated sorghum grain.

Nutrient and ruminal fermentation profiles of Camellia seed residues with fungal pretreatment

  • Yang, Chunlei;Chen, Zhongfa;Wu, Yuelei;Wang, Jiakun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • Objective: The experiment was conducted to evaluate the effects of four fungal pretreatments on the nutritional value of Camellia seed residues, and to evaluate the feeding value of pretreated Camellia seed residues for ruminants. Methods: Camellia seed residues were firstly fermented by four lignin degrading fungi, namely, Phanerochaete chrysosporium (P. chrysosporium)-30942, Trichoderma koningiopsis (T. koningiopsis)-2660, Trichoderma aspellum (T. aspellum)-2527, or T. aspellum-2627, under solid-state fermentation (SSF) conditions at six different incubation times. The nutritional value of each fermented Camellia seed residues was then analyzed. The fermentation profiles, organic matter degradability and metabolizable energy of each pre-treated Camellia seed residue were further evaluated using an in vitro rumen fermentation system. Results: After 5 days of fermentation, P. chrysosporium-30942 had higher degradation of lignin (20.51%), consumed less hemicellulose (4.02%), and the SSF efficiency reached 83.43%. T. koningiopsis-2660 degraded more lignin (21.54%) and consumed less cellulose (20.94%) and hemicellulose (2.51%), the SSF efficiency reached 127.93%. The maximum SSF efficiency was 58.18% for T. aspellum-2527 and 47.61% for T. aspellum-2627, appeared at 30 and 15 days respectively. All the fungal pretreatments significantly improved the crude protein content (p<0.05). The Camellia seed residues pretreated for 5 days were found to possess significantly increased organic matter degradability, volatile fatty acid production and metabolizable energy (p<0.05) after the treatment of either P. chrysosporium-30942, T. koningiopsis-2660 or T. aspellum-2527. The fungal pretreatments did not significantly change the rumen fermentation pattern of Camellia seed residues, with an unchanged ratio of acetate to propionate. Conclusion: The fungi showed excellent potential for the solid-state bioconversion of Camellia seed residues into digestible ruminant energy feed, and their shorter lignin degradation characteristics could reduce loss of the other available carbohydrates during SSF.

Effect of different fat and protein levels in calf ration on performance of Sahiwal calves

  • Sharma, Bharti;Nimje, Prapti;Tomar, S.K.;Dey, Dipak;Mondal, Santu;Kundu, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • Objective: The current study was carried out to examine the response of different levels of fat and protein in calf starter on nutrient utilisation, nitrogen metabolism, weight gain, blood parameters, and immunity level in pre-ruminant calves. Methods: Twenty four calves (5 days old) were divided into six groups in a 2×3 factorial design, with two levels of fat (10% and 14%) and three levels of protein (18%, 21%, and 24%). The calves were kept in individual pens for 120 days and fed with whole milk (1/10th of body weight) and calf starter ad-libitum. Daily dry matter intake was recorded; whereas body weight was taken on fortnightly basis to calculate average daily gain. During the growth trial blood samples were collected at 30 days interval to estimate blood glucose, albumin, total protein, total leucocyte count, total immunoglobulins and immunoglobulin G levels. A metabolic trial of seven days was carried out to find out the digestibility of different nutrients. Results: The dry matter intake was reduced (p<0.05) with higher fat and protein levels whereas feed conversion efficiency was improved (p<0.05) with higher protein level. Different levels of fat and protein in calf ration did not affect average daily gain in calves. The dry matter, organic matter, and crude protein digestibility were significantly (p<0.01) higher with increased level of protein. The nitrogen retention was also significantly higher (p<0.05) at 24% protein level, similarly the total immunoglobulin was significantly (p<0.05) high in higher protein fed groups, showed better immunity. Conclusion: The present finding suggested that 10% fat and 18% protein level of calf starter could be used in Sahiwal calves for optimum performance in terms of weight gain and immunity.