• Title/Summary/Keyword: Predictive probabilistic model

Search Result 31, Processing Time 0.023 seconds

Composite Dependency-reflecting Model for Core Promoter Recognition in Vertebrate Genomic DNA Sequences

  • Kim, Ki-Bong;Park, Seon-Hee
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.648-656
    • /
    • 2004
  • This paper deals with the development of a predictive probabilistic model, a composite dependency-reflecting model (CDRM), which was designed to detect core promoter regions and transcription start sites (TSS) in vertebrate genomic DNA sequences, an issue of some importance for genome annotation. The model actually represents a combination of first-, second-, third- and much higher order or long-range dependencies obtained using the expanded maximal dependency decomposition (EMDD) procedure, which iteratively decomposes data sets into subsets on the basis of dependency degree and patterns inherent in the target promoter region to be modeled. In addition, decomposed subsets are modeled by using a first-order Markov model, allowing the predictive model to reflect dependency between adjacent positions explicitly. In this way, the CDRM allows for potentially complex dependencies between positions in the core promoter region. Such complex dependencies may be closely related to the biological and structural contexts since promoter elements are present in various combinations separated by various distances in the sequence. Thus, CDRM may be appropriate for recognizing core promoter regions and TSSs in vertebrate genomic contig. To demonstrate the effectiveness of our algorithm, we tested it using standardized data and real core promoters, and compared it with some current representative promoter-finding algorithms. The developed algorithm showed better accuracy in terms of specificity and sensitivity than the promoter-finding ones used in performance comparison.

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.

Human reliability growth in the absolute identification of tones (인간신뢰도 학습현상)

  • 박희석;박경수
    • Journal of the Ergonomics Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.11-15
    • /
    • 1986
  • In this paper, we consider the validity of a human probabilistic learning model applied to the perdiction of errors associated with the absolute identification of tones. It is shown that the probabilistic learning model describes the human error process adequately. The model parameters are estimated by two methods which are the method of maximum likelihood, and the method of mement. The MLE version of the model has the better predictive power but the ME version is more readily obtainable and may be more practical.

  • PDF

Predicting Default of Construction Companies Using Bayesian Probabilistic Approach (베이지안 확률적 접근법을 이용한 건설업체 부도 예측에 관한 연구)

  • Hong, Sungmoon;Hwang, Jaeyeon;Kwon, Taewhan;Kim, Juhyung;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.13-21
    • /
    • 2016
  • Insolvency of construction companies that play the role of main contractors can lead to clients' losses due to non-fulfillment of construction contracts, and it can have negative effects on the financial soundness of construction companies and suppliers. The construction industry has the cash flow financial characteristic of receiving a project and getting payment based on the progress of the construction. As such, insolvency during project progress can lead to financial losses, which is why the prediction of construction companies is so important. The prediction of insolvency of Korean construction companies are often made through the KMV model from the KMV (Kealhofer McQuown and Vasicek) Company developed in the U.S. during the early 90s, but this model is insufficient in predicting construction companies because it was developed based on credit risk assessment of general companies and banks. In addition, the predictive performance of KMV value's insolvency probability is continuously being questioned due to lack of number of analyzed companies and data. Therefore, in order to resolve such issues, the Bayesian Probabilistic Approach is to be combined with the existing insolvency predictive probability model. This is because if the Prior Probability of Bayesian statistics can be appropriately predicted, reliable Posterior Probability can be predicted through ensured conditionality on the evidence despite the lack of data. Thus, this study is to measure the Expected Default Frequency (EDF) by utilizing the Bayesian Probabilistic Approach with the existing insolvency predictive probability model and predict the accuracy by comparing the result with the EDF of the existing model.

Quantitative microbial risk assessment of Campylobacter jejuni in jerky in Korea

  • Ha, Jimyeong;Lee, Heeyoung;Kim, Sejeong;Lee, Jeeyeon;Lee, Soomin;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.274-281
    • /
    • 2019
  • Objective: The objective of this study was to estimate the risk of Campylobacter jejuni (C. jejuni) infection from various jerky products in Korea. Methods: For the exposure assessment, the prevalence and predictive models of C. jejuni in the jerky and the temperature and time of the distribution and storage were investigated. In addition, the consumption amounts and frequencies of the products were also investigated. The data for C. jejuni for the prevalence, distribution temperature, distribution time, consumption amount, and consumption frequency were fitted with the @RISK fitting program to obtain appropriate probabilistic distributions. Subsequently, the dose-response models for Campylobacter were researched in the literature. Eventually, the distributions, predictive model, and dose-response model were used to make a simulation model with @RISK to estimate the risk of C. jejuni foodborne illness from the intake of jerky. Results: Among 275 jerky samples, there were no C. jejuni positive samples, and thus, the initial contamination level was statistically predicted with the RiskUniform distribution [RiskUniform (-2, 0.48)]. To describe the changes in the C. jejuni cell counts during distribution and storage, the developed predictive models with the Weibull model (primary model) and polynomial model (secondary model) were utilized. The appropriate probabilistic distribution was the BetaGeneral distribution, and it showed that the average jerky consumption was 51.83 g/d with a frequency of 0.61%. The developed simulation model from this data series and the dose-response model (Beta Poisson model) showed that the risk of C. jejuni foodborne illness per day per person from jerky consumption was $1.56{\times}10^{-12}$. Conclusion: This result suggests that the risk of C. jejuni in jerky could be considered low in Korea.

Quantitative Microbial Risk Assessment for Campylobacter jejuni in Ground Meat Products in Korea

  • Lee, Jeeyeon;Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Kim, Yujin;Lee, Yewon;Yoon, Ki-Sun;Seo, Kunho;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.565-575
    • /
    • 2019
  • This study evaluated Campylobacter jejuni risk in ground meat products. The C. jejuni prevalence in ground meat products was investigated. To develop the predictive model, survival data of C. jejuni were collected at $4^{\circ}C-30^{\circ}C$ during storage, and the data were fitted using the Weibull model. In addition, the storage temperature and time of ground meat products were investigated during distribution. The consumption amount and frequency of ground meat products were investigated by interviewing 1,500 adults. The prevalence, temperature, time, and consumption data were analyzed by @RISK to generate probabilistic distributions. In 224 samples of ground meat products, there were no C. jejuni-contaminated samples. A scenario with a series of probabilistic distributions, a predictive model and a dose-response model was prepared to calculate the probability of illness, and it showed that the probability of foodborne illness caused by C. jejuni per person per day from ground meat products was $5.68{\times}10^{-10}$, which can be considered low risk.

Application of Probabilistic Model to Calculate Probabilities of Escherichia coli O157:H7 Growth on Polyethylene Cutting Board

  • Lee, Joo-Yeon;Suk, Hee-Jin;Lee, Hee-Young;Lee, Soo-Min;Yoon, Yo-Han
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • This study calculated kinetic parameters of Escherichia coli O157:H7 and developed a probabilistic model to estimate growth probabilities of E. coli O157:H7 on polyethylene cutting boards as a function of temperature and time. The surfaces of polyethylene coupons ($3{\times}5$ cm) were inoculated with E. coli O157:H7 NCCP11142 at 4 Log $CFU/cm^2$. The coupons were stored at 13 to $35^{\circ}C$ for 12 h, and cell counts of E. coli O157:H7 were enumerated on McConkey II with sorbitol agar every 2 h. Kinetic parameters (maximum specific growth rate, Log $CFU/cm^2/h$; lag phase duration, h; lower asymptote, Log $CFU/cm^2$; upper asymptote, Log $CFU/cm^2$) were calculated with the modified Gompertz model. Of 56 combinations (temperature${\times}$time), the combinations that had ${\geq}$0.5 Log $CFU/cm^2$ of bacterial growth were designated with the value of 1, and the combinations that had increases of <0.5 Log $CFU/cm^2$ were given the value 0. These growth response data were fitted to the logistic regression to develop the model predicting probabilities of E. coli O157:H7 growth. Specific growth rate and growth data showed that E. coli O157:H7 cells were grown at $28-35^{\circ}C$, but there were no obvious growth of the pathogen below $25^{\circ}C$. Moreover, the developed probabilistic model showed acceptable performance to calculate growth probability of E. coli O157:H7. Therefore, the results should be useful in determining upper limits of working temperature and time, inhibiting E. coli O157:H7 growth on polyethylene cutting board.

Development of User-Friendly Modeling Software and Its Application in Processed Meat Products

  • Lee, Heeyoung;Lee, Panho;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.157-161
    • /
    • 2018
  • The objective of this study was to develop software to predict the kinetic behavior and the probability of foodborne bacterial growth on processed meat products. It is designed for rapid application by non-specialists in predictive microbiology. The software, named Foodborne bacteria Animal product Modeling Equipment (FAME), was developed using Javascript and HTML. FAME consists of a kinetic model and a probabilistic model, and it can be used to predict bacterial growth pattern and probability. In addition, validation and editing of model equation are available in FAME. The data used by the software were constructed with 5,400 frankfurter samples for the kinetic model and 345,600 samples for the probabilistic model using a variety of combinations including atmospheric conditions, temperature, NaCl concentrations and $NaNO_2$ concentrations. Using FAME, users can select the concentrations of NaCl and $NaNO_2$ meat products as well as storage conditions (atmosphere and temperature). The software displays bacterial growth patterns and growth probabilities, which facilitate the determination of optimal safety conditions for meat products. FAME is useful in predicting bacterial kinetic behavior and growth probability, especially for quick application, and is designed for use by non-specialists in predictive microbiology.

AGAPE-ET: A Predictive Human Error Analysis Methodology for Emergency Tasks in Nuclear Power Plants (원자력발전소 비상운전 직무의 인간오류분석 및 평가 방법 AGAPE-ET의 개발)

  • 김재환;정원대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.104-118
    • /
    • 2003
  • It has been criticized that conventional human reliability analysis (HRA) methodologies for probabilistic safety assessment (PSA) have been focused on the quantification of human error probability (HEP) without detailed analysis of human cognitive processes such as situation assessment or decision-making which are crticial to successful response to emergency situations. This paper introduces a new human reliability analysis (HRA) methodology, AGAPE-ET (A guidance And Procedure for Human Error Analysis for Emergency Tasks), focused on the qualitative error analysis of emergency tasks from the viewpoint of the performance of human cognitive function. The AGAPE-ET method is based on the simplified cognitive model and a taxonomy of influencing factors. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, overall human error analysis process is designed considering the cognitive demand of the required task. The application to an emergency task shows that the proposed method is useful to identify task vulnerabilities associated with the performance of emergency tasks.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.