• Title/Summary/Keyword: Pressure relief

Search Result 272, Processing Time 0.025 seconds

The Study on Sizing of the Pressure Relief Valve for Overpressure Protection of a Reactor Pressure Vessel in Low Temperature Condition (저온 상태의 원자로 압력용기의 과압방지를 위한 압력방출밸브 용량 결정에 관한 연구)

  • Lee, Jun;Kim, Yoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • The purpose of this study is to present a methodology to estimate the capacity of the pressure relief valve which prevents overpressure of the pressure vessel in a cold state. In this methodology, the transient behavior of the flow rate through the pressure relief valve and the pressure inside the pressure vessel are considered. The result of this study shows the followings; The more the relief valve capacity is considered in excess, the more the initial relief flow rate and the initial pressure inside the pressure vessel are high and low respectively. When the relief valve capacity is determined properly, the pressure inside the pressure vessel maintains almost the same value, so the ASME code requirement will be met.

  • PDF

Characteristics of polymer arrester with pressure relief structure (폴리머 피뢰기의 방압구조 및 특성)

  • Han, Dong-Hee;Cho, Han-Goo;Han, Se-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1109-1112
    • /
    • 2004
  • This study reports on the pressure relief design and braided composite of surge arrester. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. As a solution, this study describes pressure relief design performance of arresters with braided composite module. In general, braided composite has Potential for improved impact and delamination resistance. Manufacturing processes of the braided composite could also be automated and could potentially lead to lower costs. Therefore, in consideration of characteristics of pressure relief for polymer arrester, the fabric pattern of braided composite was decided. And Polymer arrester module was manufactured with braid. The mechanisms of pressure occurrence and relief were investigated basically by analyzing arc energy and the correlation between thermal shock and indoor pressure in pressure relief test.

  • PDF

Study on the relief design for the fault current of polymer arrester (폴리머 피뢰기의 고장전류에 대한 방압 설계기술에 관한 연구)

  • Kim, In-Sung;Park, Hoy-Yul;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1717-1719
    • /
    • 1999
  • The chief advantage of polymer arrester. from design of pressure relief, anti-contamination, electrical failure was reduced by outdoor polymer housing. In the first for development of pressure relief design for polymer arrester, fault current and surge were studied through experiments of electrical. Designed the FRP inner tube and unit modules for pressure relief housing. Tested the performance of unit modules for pressure relief of polymer arrester, and the result was successful. The pressure relief of polymer arrester depend on design pattern of diamond shape and ellipse. Study on the pressure relief of FRP inner tube for outdoor polymer arrester. Designed and manufactured FRP inner tube of polymer arrester. Tested the fault current of polymer arrester per 10 kA, 10 cycle.

  • PDF

Evaluation on the Effect of Relief Wells by 3D Numerical Analysis on the Embankment of an Agricultural Reservoir (농업용 저수지 제방에서 3차원 수치해석에 의한 감압정의 효과 분석)

  • Ryu, Jeon-Yong;Heo, Joon;Chang, Yong-Chai
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.119-129
    • /
    • 2020
  • Through 3D seepage analysis of pressure relief well installed on the embankment of agricultural reservoir, the effects of reducing pore water pressure and hydraulic gradient, and increasing piping safety, depending on diameter (0.2, 0.4, 0.6 m) and space (10, 25, 50 m) of relief well, were analyzed. The conclusions drawn through this study are as follows. i) At the location of pressure relief well, pore water pressure decreases by 25.3~62.5%, and hydraulic gradient decreases by 22.4~55.7%. ii) Between relief wells, pore water pressure decreases by 2.7~40.3%, and hydraulic gradient decreases by 2.8~47.0%, which are relatively less than at the cross section of installed location of relief well. iii) Piping safety factor by critical hydraulic gradient increases by 28.9~125.6% at the location of relief well and increases by 2.9~88.8% between relief wells. iv) Seepage analysis needs to be performed by the 3D method to make evaluation of seepage at the location of relief well and between relief wells possible. v) Additional evaluation is required for various conditions such as waterhead, engineering characteristics of embankment body and its foundation, location, diameter, spacing and depth of pressure relief well.

The Development of Safety Relief Valve for Nuclear Service. (원자력 등급용 안전방출밸브 개발)

  • Kim, Chil-Sung;Kim, Kang-Tae;Kim, Ji-Heon;Jang, Ki-Jong;Hong, Kee-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.629-636
    • /
    • 2003
  • The purpose of this study is localization of safety relief valves for Nuclear Service through technical development with overall design, fabrication, inspection, capacity certification test and functional qualification test of safety relief valves in accordance with ASME Section III and KEPIC Code. Safety relief valve is the important equipment used to protect the pressure vessel, the steam generator and the other pressure facility from overpressure by discharging the operating medium when the pressure of system is reaching the design pressure of the system. But we're depending on technology of the other country up to the present time. Because we don‘ have our own technologies, we have been spent the great time and money on installing and repairing safety relief valve at nuclear power plant. Therefore we have to achieve the development of safety relief valves for Nuclear Service with our own technologies.

  • PDF

Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices (릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.

Experience for development and capacity certification of safely relief valves (안전방출밸브 개발과 용량인증 사례)

  • Kim, Chil-Seong;No, Hui-Seon;Kim, Gang-Tae;Kim, Ji-Heon;Kim, Jong-Su
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.492-500
    • /
    • 2004
  • The purpose of this study is localization of safety relief valves fur Nuclear Service through technical development with overall design, fabrication, inspection, capacity certification test and functional qualification test of safety relief valves in accordance with KEPIC MN Code(or ASME Sec.III ). The safely relief valve is the important equipment used to protect the pressure vessel, the steam generator and the other pressure facility from overpressure by discharging the operating medium when the pressure of system is reaching the design pressure of the system. But we're depending on technology of the other country up to the present time. Because we don't have our own technologies, we have been spent the great time and money on installing and repairing safety relief valve at nuclear power plant. Therefore we have to achieve the development of safety relief valves for Nuclear Service with our own technologies.

  • PDF

An Analysis of the Dynamic Characteristics of a Spool Type Pressure Control Valve (스풀형 압력제어밸브의 동특성 해석)

  • Moon, Kang Hyun;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2018
  • Almost every hydraulic system is equipped with a pressure relief valve, to maintain working pressure of the system at a pre-determined level. Thus, dynamic characteristics of such a relief valve, in conjunction with other hydraulic components, are important in designing the hydraulic control system. The single stage pressure relief valve is dynamically undesirable, due to relatively low viscous damping, that causes high frequency oscillations. This problem is overcome by introducing orifices in the inner pilot line, and drain line. In this study, for the single stage spool type pressure relief valve, the system equations were derived through an adequate linearisation and several simplifications were made, to use the transfer function formulation technique. All coefficients were evaluated and used, to make some results by using Matlab software. Results of analysis are compared with experimental results. In this study, parameters affecting stability of valve design are determined and suggested relative to the design.

A Numerical Study on the Pressure Relief in a Tunnel Using a Pressure Relief Duct (공기 압력 제어 덕트를 이용한 철도 터널 내 공기 압력 저감에 대한 수치해석 연구)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sangpil
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.375-383
    • /
    • 2016
  • High-speed trains have been developed widely in many countries in order to transport a large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Therefore, it is essential to incorporate a pressure relief system in a tunnel and streamlined shape of a train in order to reduce aerodynamic resistance caused by a high-speed train. Additionally, the cross-sectional area of a tunnel should be carefully determined to reduce discomfort of passengers. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate pressure changes within a time period in a tunnel. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Design of Landing Gear Shock Absorber Using Pressure-relief Valve (Pressure-relief valve 를 적용한 착륙장치 완충장치 설계)

  • Kim, Tae-Uk;Shin, Jeong-Woo;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.508-511
    • /
    • 2008
  • The most landing gear use oleo-pneumatic shock strut to absorb the impact energy during touchdown. The shock strut is composed of the oil damper and the gas spring, especially the oil damper provides resistance force which is proportional to the square of landing speed. In case of high landing speed, the abnormal peak load can be occurred and transferred to the airframe structure. To prevent this, the pressure-relief valve is used to limit the damping force under the specific level. In this paper, it is presented the design process to find optimal damping and analysis results using pressure-relief valve.

  • PDF