• Title/Summary/Keyword: Pressureless sintering

Search Result 164, Processing Time 0.044 seconds

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Effect of Homogeneous Mixing of Sintering Additives by Coprecipitation Method on Mechanical Properties of Pressureless-Sintered $Si_3N_4$ (공침법에 의한 소결첨가제의 균일혼합이 $Si_3N_4$ 상압소결체의 기계적 특성에 미치는 영향)

  • 김지순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.265-272
    • /
    • 1993
  • Effect of mixing homogeneity in powder mixtures of Si3N4 and sintering additive (10mol% YAG) prepared by coprecipitation on the mechanical properties of pressureless-sintered body was investigated. Sintering was performed in a graphtie furnace at 1850℃ for 0.5h under 0.15MPa N2 atmosphere using Si3N4 powder bed. Results from the measurement of Young's modulus, Vickers hardness, 4-point-bending strength, and KIC for the coprecipitation-treated (CP) and the mechanically-mixed specimens(MM) showed that a remarkable improvement in flexural strength and Weibull parameter can be achieved for the CPspecimens: (677±68MPa, 12.0) for CP samples and (539±108MPa, 5.5) for MM. Other properties were almost same irrespective of preparation methods.

  • PDF

High Temperature Densification Forming Process of Tool Steel Powder Compact (공구강 분말 성형체의 고온 치밀화 성형공정)

  • Choi, Hak-Hyeon;Jeon, Yun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2182-2195
    • /
    • 1996
  • Densification characteristics and behavior of tool steel powder compact during high temperature forming processes were investigated under pressure less sintering, sinter forging and hot isostastic pressing. In pressureless sintering, full density was obtained at a closely controlled temperature near the solidus of the material. Finite element calculations from constitutive model for densification by power law creep and diffusional flow were compared with experimental data. Agreements between theoretical calculations and experimental data were good in hot isostatic pressing but not as good in sinter forging.

Mechanical Properties and Cutting Performance of Ti(CN) Based Carbonitride Ceramics (Ti(CN)기 탄화물질 세라믹스의 기계적 특성과 절삭성능)

  • Park, Dong-Su;Lee, Yang-Du;Jeong, Tae-Ju;Gang, Sin-Hu
    • 연구논문집
    • /
    • s.28
    • /
    • pp.193-207
    • /
    • 1998
  • Fully dense THCN) based carbonitride ceramics were fabricated by pressureless sintering. During sintering, solid solutions were formed from the ceramic ingredients. The ceramics exhibited microvickers hardness of 1560-2050kgf/mm2, fracture toughness of 3.0-5.4 MPa $m^(1/2)$, and three point flexural strength of 645-1072 MPa. Some of the ceramics were shaped in a cutting tool, and the cutting performance was evaluated. In case of cutting SCM440 alloy steel, the ceramics showed better performance than the commercially available alumina-titanium carbide ceramic cutting tool. Considering the excellent productivity of pressureless sintering compared with other densification methods and their cutting performance, this new class of ceramics are very promising for wear resistant applications.

  • PDF

Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering (무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

Effect of Sintering Temperature on Properties of $\beta$-SiC-$ZrB_2$ Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 $\beta$-SiC-$ZrB_2$ 복합체의 특성에 미치는 소결온도의 영향)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1436-1438
    • /
    • 2001
  • The $\beta$-SiC + $ZrB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3$ + $Y_2O_3$ (6 : 4wt%) powder as a function of sintering temperature. The relative density showed the highest value of 81.1% at 1900$^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest value of 230 MPa for composites sintered at 1900$^{\circ}C$. The vicker's hardness and the fracture toughness showed the highest value of increased with increasing sintering temperature and showed the highest of 9.88 GPa and 6.05 $MPa{\cdot}m^{1/2}$ at 1900$^{\circ}C$. The electrical resistivity was measured by the Pauw method from 25$^{\circ}C$ to 700$^{\circ}C$. The electrical resistivity of the composites showed the PTCR (Positive Temperature Coefficient Resistivity).

  • PDF

Mechanical Properties of the Pressureless Sintered Al2O3-SiC Composites(2) : Dispersion Effects of SiC Whisker (상압소결한 Al2O3-SiC계 소결체의 기계적 성질(2) : SiC Whisker의 분산효과)

  • 김경수;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.704-712
    • /
    • 1988
  • In order to investigate the effect of the second phase on Al2O3 matrix, SiC whisker was dispersed in Al2O3 matrix as a second phase over the content range of 5vol% to 20vol%. To this mixture, Y2O3 or TiO2 powder was added as a sintering additive before isostatically pressing and pressureless sintering at 1800-190$0^{\circ}C$ for 90min in N2 atmosphere. With increasing SiC whisker content, relative densities of composites were decreased and the grain growth of Al2O3 was restricted. When Y2O3 was added as a sintering aid the sintering temperature was 180$0^{\circ}C$, the maximum values of flexural strength, hardness and fracture toughness were 537MPa, 12.1GPa, 3.7MPa.m1/2, respectively. However, when the sintering temperature was elevated to 190$0^{\circ}C$, maximum values of flexural strength, hardness and fracture toughness were 453MPa, 17.5GPa, 4.9MPa.m1/2, respectively. Improved mechanical properties are assumed to be attributed to the crack deflection by the second phase SiC whisker and whisker pullout mechanism.

  • PDF

Fabrication of Al2O3/Fe-Ni Nanocomposites by Pressureless Sintering and their Magnetic Properties (상압소결에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 자기적 특징)

  • Lee, Hong-Jae;Jeong, Young-Keun;NamKung, Seok;Oh, Sung-Tag;Lee, Jai-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.769-774
    • /
    • 2002
  • The powder mixture in which Fe-Ni alloy particles of 20 nm were homogeneously dispersed on $Al_2O_3$ particle surfaces was prepared by hydrogen reduction of $Al_2O_3$ and metal oxide powders. $Al_2O_3$/Fe-Ni nanocomposites fabricated by pressureless sintering were only composed of $Al_2O_3$ and ${gamma}$-Fe-Ni phases and achieved over 98% of the theoretical density at the sintering temperature above $1350^{\circ}C$. The highest strength and toughness of the composites were 574 MPa and 3.9 MP$a{\cdot}m1/2$, respectively. These values were about 20% higher than these of monolithic $Al_2O_3$ sintered at the same conditions. Nanocomposites showed ferromagnetic properties and coercive force was increased with decrease of the average particle size of dispersions.