• Title/Summary/Keyword: Principal Compound Analysis

Search Result 43, Processing Time 0.029 seconds

Metabolomics comparison of serum and urine in dairy cattle using proton nuclear magnetic resonance spectroscopy

  • Eom, Jun Sik;Kim, Eun Tae;Kim, Hyun Sang;Choi, You Young;Lee, Shin Ja;Lee, Sang Suk;Kim, Seon Ho;Lee, Sung Sill
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1930-1939
    • /
    • 2021
  • Objective: The aim of the study was to conduct metabolic profiling of dairy cattle serum and urine using proton nuclear magnetic resonance (1H-NMR) spectroscopy and to compare the results obtained with those of other dairy cattle herds worldwide so as to provide a basic dataset to facilitate research on metabolites in serum and urine. Methods: Six dairy cattle were used in this study; all animals were fed the same diet, which was composed of total mixed ration; the fed amounts were based on voluntary intake. Blood from the jugular neck vein of each steer was collected at the same time using a separate serum tube. Urine samples were collected by hand sweeping the perineum. The metabolites were determined by 1H-NMR spectroscopy, and the obtained data were statistically analyzed by performing principal component analysis, partial least squares-discriminant analysis, variable importance in projection scores, and metabolic pathway data using Metaboanalyst 4.0. Results: The total number of metabolites in the serum and urine was measured to be 115 and 193, respectively, of which 47 and 81, respectively were quantified. Lactate (classified as an organic acid) and urea (classified as an aliphatic acylic compound) exhibited the highest concentrations in serum and urine, respectively. Some metabolites that have been associated with diseases such as ketosis, bovine respiratory disease, and metritis, and metabolites associated with heat stress were also found in the serum and urine samples. Conclusion: The metabolites measured in the serum and urine could potentially be used to detect diseases and heat stress in dairy cattle. The results could also be useful for metabolomic research on the serum and urine of ruminants in Korea.

Morphological Characteristics and Classification of 25 Selected Clones of Aralia elata Seem (두릅나무 25개 선발 클론의 형태적 특성과 유연관계)

  • Kim, Sea Hyn;Kim, Moon Sup;Han, Jingyu;Kim, Hyeusoo;Moon, Heung Kyu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • Aralia elata Seem. have a typical traditional significance among the wild herbs traditionally. Edible shoots of A. elata will augment consumer's interest due to its high value functional value, eco-friendly and pesticide-free produce. A. elata's root, fruit and bark are used as material of hypoglycemic agent and medicine for diabetes, kidney trouble, acute hepatitis, rheumation arthritis, stomach cancer and gastroenteric trouble. Flavonoid glycoside compound which is separated from A. elata's shoot shows high antioxidative activity. Also, root's identified active materials of antimicrobial was reported to be produced as food preservative and handy antimicrobial. Therefore, this research investigated quantitative morphological characteristics of leaves, spine and bud in naturally dominated and introducted A. elata in south Korea and then considered its principal compound analysis(PCA) and classification analysis(CA) among the 6 improved cultivars and 19 clones. PCA results showed that it show 76% accumulated explanation from four PC. The A. elata clones were classified into five groups; the first group of 15 clones including Yeongok, the second group of 5 clones including Yeoju, the third group of Bonghwa, Ulleung, the fourth group of Yongmunsa, Boseong and the fifth group of Singu. The object of this study will give us invaluable information about breeding by selection of A. elata in south Korea.

Changes in aroma compounds of decaffeinated coffee beans (디카페인 커피 원두의 향기성분 변화)

  • Jin-Young Lee;Young-Soo Kim
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.492-501
    • /
    • 2023
  • In this study, we wanted to understand the impact of different decaffeination processes on aroma compounds of coffee. Therefore, we analyzed differences in physical characteristics and volatile aroma compounds profiles of regular coffee (RC), Swiss water process decaffeinated coffee (SWDC), and supercritical CO2 decaffeinated coffee (SCDC) after roasting the coffee beans. The electronic nose analysis identified RC and SCDC as different groups which indicates that these groups volatile aroma compound compositions were different. The principal component analysis of volatile compound patterns identified using an electronic nose indicated that there was a large difference in volatile compounds between RC, which was not decaffeinated, and both decaffeinated SWDC and SCDC. The major aroma compounds of RC, SWDC and SCDC were propan-2-one and hexan-2-one which are ketone, and hexanal and (E)-2-pentenal which are aldehyde and 3-methyl-1-butanol which is an alcohol. After roasting, the composition of major volatile compounds appearing in the beans was similar, but the relative odor intensity was different. We identified 28 volatile aroma compounds from RC, SWDC, and SCDC using headspace-solid phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS), and analyzed 10 major compounds that were present in high abundance, including furfural, 2-furanmethanol, 2,5-dimethylpyrazine, and 2-ethyl-3-methylpyrazine.

A Study on Traditional Clothing Habit of West Africans (남아프리카 전통 복식문화 고찰 I)

  • 황춘섭
    • Journal of the Korean Society of Costume
    • /
    • v.18
    • /
    • pp.97-110
    • /
    • 1992
  • West African's traditional looms, weaving and raw materials, structural patterning, dyeing and basic forms of dress were examines in the present study in order to deepen the appreciation of the cultural heritage of West Africa, and to make a contribution to the policy planning for export market developing The research method employed was the analysis f written materials. The study was limited to the traditional clothing habit which is preserved and practicing by them at the present day and the origin and the process of the historical development of those are not included in the scope of the present study. Followings are the results of the study: (1) They have vertical single-heddle loom horizontal or ground single-heddle loom, and double-heddle loom. The width of the cloth produced on the single-heddle loom varies about 38.5cm to 123cm and double-heddle looms all produced on the single-heddle looms all produced narrow strips of cloth varying in width from about 1.3cm to 75cm, although the average is about 10-20cm. (2) Despite the relative simplicity of the llom technology a remarkable variety of textiles are produced. (3) The most popular decorative technique in West African compound weaves is extra-weft patterning which is produced on both single-heddle and double-heddle loom by men and women weavers. Other forms of secondary patterning on textiles in West Africa are dyeing, applique, patchwork and embroidery. (4) Two basic forms of dress have spread throughout West Africa, the poncho (bpibpi) and the wrapper. Some versions of these basic forms are supplemented by western inspired trousers, shirts and blouses coupled with accessories usually complete their traditional outfits. They have a great variety of basic poncho, like as Khasa, Gandura, Tuareg-poncho, Babariga, Rigas (agba-da), Grand-boubou, Afteck, Tagua, buba, Danshike etc. Although West Africa has long been in contact with the peoples of the Nile region as well as the Maghreb and Sahara, both the boubou styles and the wrapper styles appear to have developed with a minimum of outside influence. African Islam was the principal agent for the diffusion of the boubou styles.

  • PDF

Flavor Compounds in Pine Mushroom Liquor Added with Pine Tree Chips (송절편을 첨가한 송이주의 향기 성분)

  • Yoon, Jeong-Ah;Shin, In-Ung;Park, Eun-Hee;Lee, Ha-Yeon;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.316-321
    • /
    • 2020
  • Changes in flavor compounds in pine mushroom (Tricholoma matsutake) liquor added with pine tree chips were analyzed using gas chromatography/mass spectrometry. While three flavor compounds were detected in the control, fifteen were detected in the pine mushroom liquor added with pine tree chips. After eight-weeks of aging, the relative concentrations of β-fenchyl alcohol, 2-octanol, and methyl cinnamate, which are distinctive flavor characteristics of the pine mushroom, increased by 67.57%, 2.14%, and 0.94%, respectively, when pine tree chips were added (5%). Principal component analysis revealed that although flavor characteristics of the pine mushroom liquor were affected by the increased production of β-fenchyl alcohol due to the addition of pine tree chips, the aging time exerted a greater influence on flavor.

A Study on Etching of $UO_2$, Co, and Mo Surface with R.F. Plasma Using $CF_4\;and\;O_2$

  • Kim Yong-Soo;Seo Yong-Dae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.507-514
    • /
    • 2003
  • Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of $UO_2$, Co, and Mo in r.f. plasma with the etchant gas of $CF_4/O_2$ mixture. $UO_2$ is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of $UO_2\;in\;CF_4/O_2$ mixture gas is $20\%$, regardless of temperature and r.f. power. In case of $UO_2$, the highest etching reaction rate is greater than 1000 monolayers/min. at $370^{\circ}C$ under 150 W r.f. power which is equivalent to $0.4{\mu}m/min$. As for Co, etching reaction begins to take place significantly when the temperature exceeds $350^{\circ}C$. Maximum etching rate achieved at $380^{\circ}C\;is\;0.06{\mu}m/min$. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at $380^{\circ}C\;is\;1.9{\mu}m/min$. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated.

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.

Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling (FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링)

  • Song, Seung Yeob;Jie, Eun Yee;Ahn, Myung Suk;Kim, Dong Jin;Kim, In Jung;Kim, Suk Weon
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • We established a high throughput screening system of African yam tuber lines which contain high contents of total carotenoids, flavonoids, and phenolic compounds using ultraviolet-visible (UV-VIS) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. The total carotenoids contents from 62 African yam tubers varied from 0.01 to $0.91{\mu}g{\cdot}g^{-1}$ dry weight (wt). The total flavonoids and phenolic compounds also varied from 12.9 to $229{\mu}g{\cdot}g^{-1}$ and from 0.29 to $5.2mg{\cdot}g^{-1}$dry wt. FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate the 62 African yam tuber lines into three separate clusters corresponding to their taxonomic relationship. The quantitative prediction modeling of total carotenoids, flavonoids, and phenolic compounds from African yam tuber lines were established using partial least square regression algorithm from FT-IR spectra. The regression coefficients ($R^2$) between predicted values and estimated values of total carotenoids, flavonoids and phenolic compounds were 0.83, 0.86, and 0.72, respectively. These results showed that quantitative predictions of total carotenoids, flavonoids, and phenolic compounds were possible from FT-IR spectra of African yam tuber lines with higher accuracy. Therefore we suggested that quantitative prediction system established in this study could be applied as a rapid selection tool for high yielding African yam lines.

Quality Characteristics of Sikhye made with Berries (베리류로 제조한 식혜의 품질 특성에 관한 연구)

  • Yang, Ji-won;Jung, Sung Keun;Song, Kyung-Mo;Kim, Young Ho;Lee, Nam Hyouck;Hong, Sang Pil;Lee, Kyung Hee;Kim, Young-Eon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.6
    • /
    • pp.1007-1017
    • /
    • 2015
  • This study compared the physicochemical characteristics, proximate composition, taste compound, and antioxidant properties of Sikhye prepared with berries. Proximate composition and color were significantly different depending on the type of berry, whereas crude fat content and pH were not. The highest brix degree was $18.92^{\circ}Bx$ in strawberry Sikhye. Total free sugar, glucose, and fructose contents were highest in blueberry Sikhye. Titratable acidity, total acidity, and organic acid contents were highest in raspberry Sikhye. Analysis of relative antioxidative properties indicated that bokbunja Sikhye had the highest total polyphenol, flavonoid, and anthocyanin contents, highest DPPH radical scavenging ability, and highest reducing power and ferric reducing abilities in plasma. Principal component analysis suggests that bokbunja Sikhye has strong antioxidant and sweetness properties.

Comparative analysis of sensory profiles of commercial cider vinegars from Korea, China, Japan, and US by SPME/GC-MS, E-nose, and E-tongue (한국, 중국, 일본, 미국산 시판 사과식초의 관능적 품질 비교를 위한 SPME-GC/MS, 전자코 및 전자혀 분석)

  • Jo, Yunhee;Gu, Song-Yi;Chung, Namhyeok;Gao, Yaping;Kim, Ho-Jin;Jeong, Min-Hee;Jeong, Yong-Jin;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.430-436
    • /
    • 2016
  • Solid phase microextraction and gas chromatography-mass spectrometry (SPME/GC-MS), electronic nose, and electronic tongue were used to characterize the sensory profiles of cider vinegars from Korea (K1-2), China (C1-2), Japan (J1-2), and US (U1-2). SPME-GC/MS detected acetic acid as the common volatile compound in all vinegars, in addition to isovaleric acid, octanoic acid, and phenethyl acetate. Acids and acetic esters were the major components of Korean and US vinegar samples, respectively. Chinese vinegars had high ethyl acetate content, while Japanese samples were characterized by a low content of acetic acid. Principal component analysis (PCA) pattern provided a clear categorical discrimination of Chinese vinegars by E-nose and E-tongue analyses. The instrumental sensory scores and the taste attributes for flavor ($r^2=0.9431$), sourness ($r^2=0.9515$), and sweetness ($r^2=0.8325$) were highly correlated. Therefore, SPME/GC-MS, E-nose, and E-tongue analyses may be useful tools to discriminate the sensory profiles of cider vinegars of different origins.